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Abstract
We propose an architecture for fine-grained visual categorization that approaches ex-

pert human performance in the classification of bird species. Our architecture first com-
putes an estimate of the object’s pose; this is used to compute local image features which
are, in turn, used for classification. The features are computed by applying deep convolu-
tional nets to image patches that are located and normalized by the pose. We perform an
empirical study of a number of pose normalization schemes, including an investigation
of higher order geometric warping functions. We propose a novel graph-based clustering
algorithm for learning a compact pose normalization space. We perform a detailed inves-
tigation of state-of-the-art deep convolutional feature implementations [17, 22, 26, 28]
and fine-tuning feature learning for fine-grained classification. We observe that a model
that integrates lower-level feature layers with pose-normalized extraction routines and
higher-level feature layers with unaligned image features works best. Our experiments
advance state-of-the-art performance on bird species recognition, with a large improve-
ment of correct classification rates over previous methods (75% vs. 55-65%).

1 Introduction
Fine-grained categorization, also known as subcategory recognition, is a rapidly growing
subfield in object recognition. Applications include distinguishing different types of flow-
ers [36, 37], plants [2, 29], insects [30, 35], birds [5, 10, 15, 19, 31, 43, 50, 51], dogs [27, 33,
38, 39], vehicles [42], shoes [4], or architectural styles [34]. Each of these domains individ-
ually is of particular importance to its constituent enthusiasts; moreover, it has been shown
that the mistakes of state-of-the-art recognition algorithms on the ImageNet Challenge usu-
ally pertain to distinguishing related subcategories [41]. Developing algorithms that perform
well within specific fine-grained domains can provide valuable insight into what types of
models, representations, learning algorithms, and annotation types might be necessary to
solve visual recognition at performance levels that are good enough for practical use.

Within fine-grained categorization, bird species recognition has emerged as one of the
most widely studied areas (if not the most) in the last few years, in part due to the release of
CUB-200 [45] and CUB-200-2011 [44] as standard datasets. Performance improvements on
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Figure 1: Pipeline Overview: Given a test image, we use groups of detected keypoints to compute multiple warped
image regions that are aligned with prototypical models. Each region is fed through a deep convolutional network,
and features are extracted from multiple layers. Features are concatenated and fed to a classifier.

the CUB datasets over the last few years have been remarkable, with early methods achieving
10− 20% 200-way classification accuracy [10, 44, 45, 47], and recent methods achieving
55− 65% accuracy [5, 12, 15, 17, 21, 51]. Here we report further accuracy gains up to
75.7%. Our approach extends earlier work on pose-normalized recognition [5, 12, 19, 51]–a
two-staged recognition in which part detection precedes feature extraction for fine-grained
classification. This paper makes 3 main contributions:

1. An empirical study of pose normalization schemes for fine-grained classification, in-
cluding an investigation of higher order geometric warping functions and a novel
graph-based clustering algorithm for learning a compact pose normalization space.

2. A detailed experimental investigation of state-of-the-art deep convolutional features [17,
22, 26, 28] and feature learning for fine-grained classification.

3. A completely automated system for detecting birds in images, locating their parts, and
classifying the species of each bird. The system delivers unprecedented performance.

2 Related Work
Work on fine-grained categorization over the past 5 years has been extensive. Areas explored
include feature representations that better preserve fine-grained information [35, 46, 47, 48],
segmentation-based approaches [1, 13, 14, 15, 21, 37] that facilitate extraction of purer
features, and part/pose normalized feature spaces [5, 6, 19, 33, 38, 39, 43, 50, 51]. Among
this large body of work, it is a goal of our paper to empirically investigate which methods
and techniques are most important toward achieving good performance. Consequently, we
describe a simple pose normalization method that can be used to express many of the above
techniques and logical extensions. We find that a similarity based pose warping function
as used by Berg and Belhumeur [5] yields the best performance and can be improved by
using more parts to estimate the warping, while being made more compact and efficient by
learning pose regions. We investigate the interplay between pose-normalized images and the
types of features that work best with them.

The impressive performance of deep convolutional networks [32] (CNNs) on large scale
visual recognition challenges, ignited by [28], has motivated researchers to adapt CNNs that
were pre-trained on ImageNet to other domains and datasets, including Caltech-101 [49],
Caltech-256 [49], VOC detection [22], and VOC classification [49]. Donahue et al. [17]
extracted CNN features from part regions detected using a DPM, obtaining state-of-the-art
results in bird species classification. Our work is inspired by these results, and we improve
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on them by combining ideas inspired from fine-grained recognition and CNN research. In
particular, we find that different layers of the CNN are appropriate for different levels of
alignment. Secondly, we explore different methods for fine-tuning CNN weights on the
CUB-200-2011 training set, inspired by techniques and results from Girshick et al. [22].

3 Pose Normalization Schemes
In this section, we define a class of pose normalization schemes based on aligning detected
keypoints to the corresponding keypoints in a prototype image. In Section 3.2, we introduce
an algorithm for learning a set of prototypes that minimizes the pixel-wise alignment error
of keypoint annotations in a training set and works for arbitrary warping functions.

3.1 Pose Normalization By Prototypical Regions
Let {(Xi,Yi)}n

i=1 be a training set of n images and ground truth part annotations, where each
annotation Yi = {yi j}K

j=1 labels the pixel location and visibility of K 2D keypoints in the
image Xi. Due to its simplicity and ease of collection, this style of 2D keypoint annotations
is widely used (e.g., for birds [44], dogs [33], faces [24], and humans [9]).

Let Ψ(X ,Y ) = [ψp(X ,Y )]Pp=1 be a feature vector that is obtained by concatenating P
pose normalized feature spaces, where each ψp(X ,Y ) may correspond to a different part or
region of an object and can be estimated using some subset of keypoints in Y . We consider
a simple definition of ψp(X ,Y ) based on prototypical examples. Let the p-th prototype
Rp = {ip,bp,Sp} consist of a reference image ip, a rectangle bp defining a region of interest
in Xip for feature extraction, and a set of keypoint indices Sp. Given a test image Xt with
detected keypoints Yt , we solve for the transformation W (yt j,w) in some class of warping
functionsW that best aligns the corresponding keypoints in Yt to Yip :

w∗t p = arg min
w∈W ∑

j∈Sp

E(yt j,Rp,w), where E(yt j,Rp,w) = ‖ŷip j−W (yt j,w)‖2 (1)

where ‖ ·‖ indicates Euclidean distance, and ŷip j is a version of yip j after normalizing by the
bounding box bp (by subtracting the upper-left coordinate and dividing by the width/height).
The induced pose normalized feature space ψp(X ,Y ) = φ(X(w∗t p)) is obtained by applying
this warp to the image Xt and then extracting some base feature φ(X), where X(w) is a
warped version of image X .

In Table 1, we define how Eq 1 can be computed for many different warping families,
including simple translations, similarity transformations (2D rotation, scale, and translation),
and affine transformations. The extension to other families such as homographies and thin-
plate-splines [3, 8] is straightforward. The above transformations have simple closed form
solutions and have well understood properties in approximating projective geometry of 3D
objects. In each case, the applicable warping function is only well-defined if the number of
points available |S| is sufficiently large. Let S ⊆ Sp be the subset of points in Sp that are
visible as determined by detected keypoints Yt . If |S| falls below the applicable minimum
threshold, we set the induced feature vector ψp(X ,Y ) to zero.

3.2 Learning Pose Prototypes
In this section, we introduce an algorithm for learning pose prototypes from training images
with keypoint annotations. The approach has a similar objective to a poselet learning algo-
rithm [9]. The main difference is that our approach generalizes to arbitrary warping schemes
while explicitly optimizing pixel-wise alignment error in the induced feature space.

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2013

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011{}

Citation
Citation
{Liu, Kanazawa, Jacobs, and Belhumeur} 2012

Citation
Citation
{Huang, Ramesh, Berg, and Learned-Miller} 2007

Citation
Citation
{Bourdev and Malik} 2009

Citation
Citation
{Belongie, Malik, and Puzicha} 2000

Citation
Citation
{Bookstein} 1989

Citation
Citation
{Bourdev and Malik} 2009



4 BRANSON, VAN HORN ET AL.: BIRD SPECIES CATEGORIZATION

Name W (y,w) Solve w∗t p # Pts
Translation y = yt +T T = µi−µt |S| ≥ 1

2D Similarity y = sRyt + t R =V diag(1,det(VU>))U>, s =
tr(M̄>i RM̄t)

tr(M̄>t M̄t)
, T = µi− sRµt |S| ≥ 2

2D Affine y = Ayh
t A = MiMh>

t (Mh
t Mh>

t )−1 |S| ≥ 3
Table 1: Computation of warping function W (y,w) from detected points Yt [S] to a prototype Yi[S] for different
warping families. In the above notation, let Mt and Mi be 2×|S| matrices obtained by stacking points in Yt and Yi,
and µt and µi be their means. Let M̄t and M̄i denote mean subtracted versions of these matrices, and the superscript
h denote points in homogeneous coordinates. Let C =UΣV> be the SVD of C = M̄t M̄>i .

Hand Defined Learned-Protos Rand-Pairs CUB-Keypoints

Figure 2: Example Warped Regions: The top row visualizes different prototypes, each of which defines a region
of interest and multiple keypoints that are used to estimate a warping. The bottom rows show the resulting warped
regions X(w∗t p) when 5 images are aligned with each prototype. The 4 groupings of warped regions represent
4 baseline experiments analyzed in Table 3, which includes 1) Hand-Defined head or body regions, 2) the 1st 3
prototypes learned using our method from Section 3.2, 3) Rand-Pairs, which simulates [5], 4) CUB-Keypoints,
which simulates [12]. In general, we see that a similarity transform captures the scale/orientation of an object better
than a translation, while an affine transformation sometimes overly distorts the image. Using more points to estimate
the warping allows for non-visible keypoints and ambiguous image flipping problems to be handled consistently.

Recall that E(yt j,Rp,w∗t p) is the squared pixel alignment error in the induced pose-
normalized feature space when matching image t to prototype Rp. We attempt to learn a
set of prototypes {Rp}P

p=1 that minimizes the alignment error under the constraint that each
keypoint yt j in the training set must be aligned with low error to at least one prototype. The
intuitive justification is that all portions of an object – each of which might contain important
discriminative information – should be consistently aligned in at least one component of the
feature space Ψ(X ,Y ) = [ψp(X ,Y )]Pp=1. Our goal is to choose a set of prototypes R∗ that
optimizes the objective

R∗ = argmin
R

λP+
1

nK

n

∑
t=1

K

∑
j=1

min
p

E(yt j,Rp,w∗t p) (2)

where the first term penalizes the number of prototypes selected and the second term min-
imizes pixel-wise alignment error, with λ being a tweakable tradeoff parameter. The opti-
mization problem can be complex due to the possibility of complex warping functions w∗t p
(Eq 1) and prototype definitions. To make the problem tractible, we consider candidate proto-
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types anchored by a keypoint in the training set (nK candidates in total). Given an anchor yik
representing the k-th keypoint in image i, we define the candidate prototype Rik = {i,Sik,bik}
in terms of a set Sik of the M-nearest neighbors in Yi to yik, and bik as an expanded bounding
box around those keypoints.

We can solve Eq. 2 as a non-metric facility location problem [18]. Given predefined
costs clm of connecting city l to facility m and costs om of opening facilities, the goal is
to open a subset of facilities with minimum cost such that each city must be connected to
one facility. Eq 2 reduces to a facility location problem, where each anchor point yik is a
candidate facility with open cost λ , and each keypoint yt j is a city that can be connected to
a facilty with cost ct j,ik = E(yt j,Rik,w∗t,ik). A nice property of facility location problems is
that, unlike some clustering algorithms like k-means, a fast greedy algorithm [25] has good
approximation guarantees (1.61 [25] when the city-facility costs are metric, 1+ lnP [23] for
non-metric costs). This algorithm requires precomputing pairwise costs ct j,ik and sorting
them. Examples of learned prototypes can be seen in Fig 2.

4 Deep Convolutional Features
Our pose-warped image regions {X(w∗t p)}p are each fed into a feature extractor φ(X), where
φ(X) is the output of one or more layers of a deep convolutional neural network (CNN) [28].
We use the network structure from Krizhevsky et al. [28].

4.1 Multi-Layer CNN Features For Different Alignment Models
The progression through the 8-layer CNN network can be thought of as a progression from
low to mid to high-level features. The later layers aggregate more complex structural infor-
mation across larger scales–sequences of convolutional layers interleaved with max-pooling
are capable of capturing deformable parts, and fully connected layers can capture complex
co-occurence statistics. On the other hand, later layers preserve less and less spatial informa-
tion, as max-pooling between each convolutional layer successively reduces the resolution of
the convolutional output, and fully connected layers drop semantics of spatial location. We
thus hypothesize (and verify empirically in Section 5), that different layers of this pipeline
are more appropriate for different alignment models, and combining multiple levels of align-
ment can yield superior performance.

Our final feature space concatenates features from multiple regions and layers, and one-
vs-all linear SVMs are used to learn weights on each feature. The use of an SVM (instead
of the multiclass logistic loss used by CNNs) is primarily for technical convenience when
combining multiple regions. To handle layers with different scales of magnitude, each CNN
layer output is normalized independently during feature extraction. In the next section, we
explore a few different approaches for training the internal weights of the CNN.

4.2 Training the Convolutional Neural Net
We consider 4 training/initialization methods:
Pre-Trained ImageNet Model: This corresponds to the methodology explored in [17],
where the CNN is pre-trained on the 1.2 million image ImageNet dataset and used directly
as a feature extractor.
Fine-Tuning the ImageNet Model: This corresponds to the methodology explored in [22].
Here, the final 1000-class ImageNet output layer is chopped off and replaced by a 200-class
CUB-200-2011 output layer. The weights of the new layer are initialized randomly, and

Citation
Citation
{Erlenkotter} 1978

Citation
Citation
{Jain, Mahdian, Markakis, Saberi, and Vazirani} 2003

Citation
Citation
{Jain, Mahdian, Markakis, Saberi, and Vazirani} 2003

Citation
Citation
{Hochbaum} 1982

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, and Darrell} 2013

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2013



6 BRANSON, VAN HORN ET AL.: BIRD SPECIES CATEGORIZATION

stochastic gradient descent (SGD) and back propagation are used to train the entire network
jointly with a small learning rate. Because the last layer is new and its weights are random,
its weights are likely much further from convergence than the pre-trained ImageNet layers.
Consequently, its learning is increased by a factor of 10.
Two Step Fine-Tuning Method: We explore a 2nd possible fine-tuning method that aims
to avoid using unbalanced learning rates for different layers. Here, we use the same network
structure as for the previous method. We use a two step process. In the first step, we fix the
weights of the old ImageNet layers and learn the weights of the new 200-class output layer–
this is equivalent to training a multiclass logistic regression model using the pre-trained
ImageNet model as a feature extractor. It is a fast, convex optimization problem. This fixes
the problem of initializing the new layer. SGD and back propagation are then used to jointly
train all weights of the entire network, where each layer is given the same learning rate. To
our knowledge, this initialization scheme has not yet been explored in earlier work.
Training From Scratch: The earlier three approaches can be seen as an application of
transfer learning, where information from the ImageNet dataset has been used to train a
better classifier on a different set of classes/images. To help differentiate between gains from
more training data and the network structure of the CNN, we investigate training the CNN
without ImageNet initialization. Weights are initialized randomly before training with SGD.

5 Experiments
We evaluate performance on the CUB-200-2011 dataset [44], a challenging dataset of 200
bird species and 11,788 images. The dataset includes annotations of 15 semantic keypoint
locations. We use the standard train/test split and report results in terms of classification
accuracy. Although we believe our methods will generalize to other fine-grained datasets, we
forgo experiments on other datasets in favor of performing more extensive empirical studies
and analysis of the most important factors to achieving good performance on CUB-200-2011.
Specifically, we analyze the effect of different types of features, alignment models, and CNN
learning methods. We believe that the results of these experiments will be informative and
useful to researchers who work on object recognition in general.
Implementation Details: We used the DPM implementation from [11], which outputs pre-
dicted 2D locations and visibility of 13 semantic part keypoints. To learn pose prototype
regions, we chose λ = 82, which means that a new prototype should be added if it reduces
the average keypoint alignment error by 8 pixels. For our best classifier, we concatenated
features extracted from each prototype region with features extracted from the entire image.

We used the Caffe code base from Jia [26] to extract, train, and fine-tune the CNN with
the default structure and parameter settings. When extracting feature outputs from different
CNN layers, we use the names conv3, conv4, conv5, fc6, and fc7, where conv denotes a
convolutional layer, fc denotes a fully connected layer, and the number indicates the layer
number in the full CNN. We appended these names with the suffix -ft to denote features
extracted on a CNN that was fine-tuned on CUB-200-2011. To fine-tune the CNN, we set
the base learning rate to 0.001.

5.1 Summary of Results and Comparison to Related Work
Table 2 summarizes our main results and comparison to related work. Our fully automatic
approach achieves a classification accuracy of 75.7%, a 30% reduction in error from the
highest performing (to our knowledge) existing method [17]. We note that our method does
not assume ground truth object bounding boxes are provided at test time (unlike many/most
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Method Oracle Parts Oracle BBox Part Scheme Features Learning % Acc
POOF [5] 3 Sim-2-131 POOF SVM 56.8
Alignments [21] 3 Trans-X-4 Fisher SVM 62.7
Symbiotic [15] 3 Trans-1-1 Fisher SVM 61.0
DPD [51] 3 Trans-1-8 KDES SVM 51.0
Decaf [17] 3 Trans-1-8 CNN Logistic Regr. 65.0
CUB [44] Trans-1-15 BoW SVM 10.3
Visipedia [12] Trans-1-13 Fisher SVM 56.5
Ours Sim-5-6 CNN SVM+CNN-FT 75.7
CUB Loc. [44] 3 3 Trans-1-15 BoW SVM 17.3
POOF Loc. [5] 3 3 Sim-2-131 POOF SVM 73.3
Ours Loc. 3 3 Sim-5-6 CNN SVM+CNN-FT 85.4

Table 2: Comparison to Related Work on CUB-200-2011: Our method significantly outperforms all earlier methods
to our knowledge, both in terms of fully automatic classification accuracy (top grouping), and classification accuracy
if part locations are provided at test time (bottom grouping). We categorize each method according to 4 axes which
we believe significantly affect performance: 1) Level of automation, where column 2-3 indicate whether or not
parts or object bounding boxes are assumed to be given at test time, 2) Part localization scheme (column 4), using
the naming scheme Transformation-X-Y, where Transformation indicates the image warping function used (see
Table 1), X indicates the number of keypoints/base-parts used to warp each region, and Y indicates the number of
pose regions used, 3) Type of features (column 5), and 4) Learning algorithm (column 6), where CNN-FT is short
for CNN fine-tuning.

methods). If we assume ground truth part locations are provided at test time, accuracy is
boosted to 85.4%. These results were obtained using prototype learning using a similarity
warping function computed using 5 keypoints per region, CNN fine-tuning, and concatenat-
ing features from all layers of the CNN for each region.

We attempt to categorize each related method according to part localization scheme,
features used, and learning method. See the caption of Table 2 for details. The major factors
that we believe explain performance trends and improvements are summarized below:

1. Choice of features caused the most significant jumps in performance. The earli-
est methods that used bag-of-words features achieved performance in the 10− 30%
range [44, 50]. Recently methods that employed more modern features like POOF [5],
Fisher-encoded SIFT and color descriptors [40], and Kernel Descriptors (KDES) [7]
significantly boosted performance into the 50− 62% range [5, 12, 15, 21, 51]. CNN
features [28] have helped yield a second major jump in performance to 65−76%.

2. Incorporating a stronger localization/alignment model is also important. Among align-
ment models, a similarity transformation model fairly significantly outperformed a
simpler translation-based model. Using more keypoints to estimate warpings and
learning pose regions yielded minor improvements in performance.

3. When using CNN features, fine-tuning the weights of the network and extracting fea-
tures from mid-level layers yielded substantial improvements in performance beyond
what had been explored in [17].

We support these conclusions by performing lesion studies in the next 3 sections.

5.2 Comparing Feature Representations
We performed experiments to quantify the effect of different image features and their perfor-
mance properties with different alignment models. We compare CNN features from different
layers to HOG [16] and Fisher-encoded [40] color and SIFT features while controlling for
other aspects of our algorithms. HOG is widely used as a good feature for localized mod-
els, whereas Fisher-encoded SIFT is widely used on CUB-200-2011 with state-of-the-art
results [12, 15, 21]. For HOG, we use the implementation/parameter settings of [20] and
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(a) Feature Performance Comparison
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(b) Effect of CNN Layers For Different Regions
Figure 3: Effect of features and region type on CUB-200-2011: (a) CNN features significantly outperform HOG
and Fisher features for all levels of alignment (image, bounding box, head). (b) Comparing classification perfor-
mance for different CNN layers and regions if we assume ground truth part locations are known at test time (no
fine-tuning used), we see that 1) features extracted from the head (yellow tube) significantly outperform other re-
gions, 2) The later fully connected layers (fc6 & fc7) significantly outperform earlier layers when a crude alignment
model is used (image-level alignment), whereas convolutional layers (conv5) begin to dominate performance as we
move to a stronger alignment model (from image→ bbox→ body→ head), 3) Using a similarity warping model
significantly outperforms a translation model (width of the red and yellow tubes), and slightly outperforms an affine
model, 4) Using more points (from 1 to 5) to estimate the warping improves performance for the body, whereas 2
points is sufficient for the head.

induce a 16×16×31 descriptor for each region type. For Fisher features, we use the imple-
mentation and parameter settings from [12]. We summarize the results below:
CNN features significantly improve performance: In Fig 3, we see that CNN features
significantly outperform other features for all levels of alignment, 57.3% vs. 28.2% for
image-level features, and 78.4% vs. 58.1% for a similarity-aligned head. HOG performs
well only for aligned regions (the head), while Fisher features perform fairly well across
different levels of alignment.
Different layers of the CNN are appropriate for different alignment models: In Fig. 3(b),
we see that the later fully connected layers of the CNN (fc6 & fc7) significantly outperform
earlier layers when a crude alignment model is used (57.3% vs 42.4% for image-level align-
ment), whereas convolutional layers (conv5) begin to dominate performance as we move to
a stronger alignment model (from image→ bbox→ body→ head).

5.3 Comparing Part Localization Schemes
We next perform experiments to quantify the effect of our pose normalization scheme, in-
cluding the effect of the type of warping function used, a comparison of different methods
of combining multiple pose regions, and the effect of imperfect part detection.
A similarity alignment model works best: In Fig. 3(b), we compare the effect of different
choices of warping functions (translation, similarity, and affine) and the number of keypoints
used to estimate them. We see that a similarity warping model significantly outperforms a
translation model and slightly outperforms an affine model (on the head region, 74.8% for
similarity vs. 65.2% for translation vs. 73.3% for affine). Secondly, we see that using more
points (from 1 to 5) to estimate the warping improves performance for the body, whereas 2
points is sufficient for the head.
Combining multiple regions improves performance: In Table 3, we compare different
strategies for combining multiple pose regions. We note that combining multiple regions
improves performance over the best single region: 85.4% vs. 78.4% for the head. We
compare to several different baseline methods for inducing a multi-region feature space
while keeping our feature implementation fixed. The Proto-Learn method employs our pose
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(b) Effect of Fine-Tuning, GT Parts
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(c) Effect of Fine-Tuning, Pred Parts
Figure 4: Effect of fine-tuning and ground truth parts on CUB-200-2011: (a) If ground truth parts were avail-
able at test time or part detection could be improved, performance would be improved significantly (width of
red/yellow tubes, with fine-tuning). (b) Fine-tuning significantly improves performance for all alignment levels
(width of each tube). Improvements occur for all CNN layers; however, the effect is largest for fully connected
layers. (c) The same effect holds for automated part prediction.

learning scheme from Section 3.2 using a similarity warping model and slightly outper-
forms other methods while being compact. Rand-Pairs simulates the alignment method used
by POOF [5], where random pairs of keypoints induce similarity-aligned regions. CUB-
Keypoints simulates the method used by [12] (among others), where each detected keypoint
directly induces a surrounding pose region. Head-Body represents a baseline of expert-
defined regions, and concatenates hand-defined similarity-aligned head and body regions
with image and bounding box features.

Head Body (2) Proto-Learn (6) Rand-Pairs (6) Rand-Pairs (30) CUB-Keypoints (13)
83.7 85.4 83.2 84.1 79.6

Table 3: Comparing Different stategies for combining multiple regions when part locations are given at test
time. The number in parentheses indicates the number of regions used for each method.

Imperfect part detection causes a significant but manageable drop in performance: In
Fig. 4(a), we visualize the drop in performance caused by using detected vs. ground truth
parts for different regions, which results in a drop in performance from 85.4% to 75.7% when
combining regions. This is a sizeable drop in performance that we hope to reduce in future
work by improving our part detection method; however, this gap is also surprisingly small,
in large part due to the excellent performance of CNN features on image-level features.

5.4 Comparing CNN Learning Methods
In this section, we compare different strategies for learning the internal weights of the CNN.
Fine-tuning CNN weights consistently improves performance: In Fig. 4(b)-4(c), we com-
pare performance when using the pre-trained ImageNet model as a feature extractor vs. fine-
tuning the ImageNet model on the CUB-200-2011 dataset (see Section 4.2 for details). We
see that fine-tuning improves performance by 2− 10%, and improvements occur for all re-
gion types (image, bounding box, head, body), all CNN layers, and both on predicted and
ground truth parts.
ImageNet pre-training is essential: The default CNN implementation was pre-trained on
ImageNet and performance improvements come in part from this additional training data.
We tried training the same network structure from scratch on the CUB-200-2011 dataset over
5 trials with random initialization. Performance was significantly worse, with 10.9% and
54.7% accuracy on image-level and similarity-aligned head regions, respectively (compared
to 57.0% and 78.6% performance with pre-training) The problem relates to overfitting–the
CNN model has 60 million learnable parameters [28] and the CUB-200-2011 dataset has
< 6000 training images. Learning converged to near zero training error for both fine-tuning
and training from scratch.
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Figure 5: Most Misclassified Species and Failure Cases: Each row shows a random misclassified test example
from the top 4 most misclassified species (Common Tern, American Crow, Elegant Tern, Pelagic Cormorant), and
the 5 highest scoring predicted classes according to our fully automated computer vision system. Each predicted
species is visualized using the training image that is the nearest neighbor in feature space. Common sources of
failures include 1) highly related species (e.g., terns), 2) black birds that are very similar in terms of color and
texture, and 3) birds that are very shape deformable (e.g., cormorants and flying birds).

The two step fine-tuning method yields more reliable improvements: Over 5 random
trials, our proposed 2-step fine-tuning method improved average accuracy on both the image
and head regions by about 2% compared to the method used in [22] (57.0% and 78.6%
compared to 55.1% and 76.9%).

6 Conclusion
In this paper, we reduced the error rate on CUB-200-2011 by 30% compared to previ-
ous state-of-the-art methods, and analyzed which design decisions were most important to
achieving good performance. Our method is based on part detection and extracting CNN fea-
tures from multiple pose-normalized regions. Performance improvements resulted in large
part from 1) using CNN features that were fine-tuned on CUB-200-2011 for each region, 2)
using different CNN layers for different types of alignment levels, 3) using a similarity-based
warping function that is estimated using larger numbers of detected keypoints. We also in-
troduced a novel method for learning a set of pose regions that explicitly minimizes pixel
alignment error and works for complex pose warping functions. In future work, we hope
to apply our methods to other fine-grained datasets and explore customized CNN network
structures and their training.
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