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Abstract We present a visual recognition system for fine-
grained visual categorization. The system is composed of a
human and a machine working together and combines the
complementary strengths of computer vision algorithms and
(non-expert) human users. The human users provide two
heterogeneous forms of information object part clicks and
answers to multiple choice questions. The machine intelli-
gently selects the most informative question to pose to the
user in order to identify the object class as quickly as pos-
sible. By leveraging computer vision and analyzing the user
responses, the overall amount of human effort required, mea-
sured in seconds, is minimized. Our formalism shows how
to incorporate many different types of computer vision algo-
rithms into a human-in-the-loop framework, including stan-
dard multiclass methods, part-based methods, and localized
multiclass and attribute methods. We explore our ideas by
building a field guide for bird identification. The experi-
mental results demonstrate the strength of combining igno-
rant humans with poor-sighted machines the hybrid system
achieves quick and accurate bird identification on a dataset
containing 200 bird species.
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1 Introduction

Fine-grained categorization, also known as subordinate cate-
gorization in psychology literature (Rosch 1999; Mervis and
Crisafi 1982; Biederman et al. 1999), has emerged in recent
years as a problem of great interest to the computer vision
community, with applications including species identifica-
tion for animals (Wah et al. 2011; Liu et al. 2012; Khosla et
al. 2011), plants (Kumar et al. 2012), flowers (Nilsback and
Zisserman 2008) and insects (Larios et al. 2010) as well as
classification of man-made objects such as vehicle makes and
models (Stark, et al. 2012) and architectural styles (Maji and
Shakhnarovich 2012). Fine-grained visual categories lie in
the space between basic (or entry) level categories (Rosch et
al. 1976) (e.g., the 20 classes from PASCAL VOC including
motorbikes, dining tables, etc.) and identification of individu-
als (e.g., face or fingerprint biometrics). As the visual distinc-
tions among fine-grained categories are often quite subtle, a
given general-purpose tool popular for basic-level category
recognition can be rendered a rather blunt instrument in the
fine-grained case.

While a layperson can recognize entry level categories
like bicycles or birds immediately, fine-grained categories
are difficult for untrained humans. They are typically recog-
nized only by experts. This work arises from a key realiza-
tion: while fine-grained visual categorization is difficult for
both humans and machines, humans and machines have rad-
ically different strengths and weaknesses. Humans are able
to detect and broadly categorize objects, even when they do
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not recognize them. They can localize basic shapes and parts,
and recognize colors and materials (see Figs. 1, 2). Human
errors arise primarily because people have (1) limited expe-
riences and memory and (2) subjective and perceptual differ-
ences. In contrast, computers can run deterministic software
and aggregate large databases of information. They excel at
memory intensive problems like recognizing movie posters
or cereal boxes but struggle with objects that are texture-
less, immersed in clutter, highly articulated or non-trivially
deformed. This suggests that a visual system composed of
a human and a machine can carry out the task, and do so
efficiently, by combining the strengths of each; this requires
a dynamic collaboration between the two agents.

With the goal of developing a combined human and
machine system for visual classification, we introduce mod-
els and algorithms that account for errors and inaccuracies
of computer vision algorithms (part localization, attribute
detection and object classification) and ambiguities in mul-
tiple forms of human feedback (perception of part locations,
attribute values and class labels). An example human-in-the-
loop system is depicted in Fig. 3, where a picture of an
unknown bird species is identified using a combination of
computer vision and intelligently selected questions (e.g.,
click on the beak, what is the primary color of the bird?,
etc.). Our approach combines the complementary strengths
of humans and computers for these different modalities by
optimizing a single principled objective function: minimiz-
ing the expected amount of time to complete a given classi-
fication task.

Our models and algorithms combine all such sources of
information, including human responses to part-click, binary,
multiple choice and multi-select questions, into a single prin-
cipled framework. We have implemented a practical real-
time system for bird species identification on a 200-category
dataset. Recognition and pose registration can be achieved
automatically using computer vision; the system can also
incorporate human feedback when computer vision is unsuc-

Fig. 1 Screen capture of an ipad app for bird species recognition. A
user takes a picture of a bird she wants to recognize, which is uploaded
to a server. The server runs computer vision algorithms to localize parts
and predict bird species. The computer system intelligently selects a
series of questions to ask that are designed to reduce its uncertainty
about the predicted bird species as quickly as possible. (a) The system
poses the question click on the head? The user’s click response is used
to refine part location and class probability estimates. (b) The system
chooses another what is the primary color of the bird? (c) The system
thinks that the bird is a Blue-headed Vireo. (d) Debugging output of
the algorithms shows detected part locations and part probability maps
(Color figure online)

(A) (B) (C)

Fig. 2 Examples of classification problems that are easy or hard for
humans. While basic-level category recognition (left) and recognition
of low-level visual attributes (right) are easy for humans, most people

struggle with fine-grained categories (middle). By defining categories
in terms of low-level visual properties, hard classification problems can
be turned into a sequence of easy ones
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Fig. 3 System overview. Our system uses a combination of computer
vision and interactive feedback to recognize bird species. It begins by
running computer vision algorithms to localize parts and predict bird
species. The system intelligently selects a question click on the breast
that it believes will maximally reduce its ambiguity about its species pre-

diction. The user’s response significantly improves the localization of
both the breast and the belly, which refines class estimates. The system
chooses another question, what is the tail color? The user’s answer of
yellow is used to further refine class probability estimates. The process
continues until the user stops the interface (Color figure online)

cessful by intelligently posing questions to human users (see
Fig. 3).

1.1 Contributions

This paper makes four contributions:

1. A hybrid human–machine vision system for subordinate
categorization. The design includes a GUI, a method for
measuring the statistics of human-provided attributes for
each category, a method for estimating class probabilities
from computer vision measurements and human-provided
information, and an algorithm for selecting the most infor-
mative questions that should be posed to the human users.

2. A computer vision system for automated fine-grained
categorization. Our algorithms can localize and classify
objects on a 200-class dataset in a fraction of a second,
using detectors that are shared among classes. Our fully
automated computer vision algorithms significantly out-
perform earlier methods on CUB-200-2011 (Wah et al.
2011)

3. A formal model for evaluating the usefulness of different
types of human input. We introduce fast algorithms that
are able to predict the informativeness of 312 binary ques-
tions, 29 multiple choice and multi-select questions, and
15 part click questions in a fraction of a second.

4. A thorough experimental comparison of a number of
methods for optimizing human input. We include results
of a real world study of 27 human subjects using our bird
identification tool.

We have implemented our algorithms into practical tools
for bird species identification, including a web-based iden-
tification tool and an iPad app (see Fig. 1). The design of
our system is modular and can be used in conjunction with
a wide variety of computer vision algorithms. A visualiza-
tion of the different components of our system is shown
in Fig. 3.

1.2 Differences from Earlier Work

This article consolidates earlier work published in ECCV
2010 (Branson et al. 2010) and ICCV 2011 (Wah et al. 2011),
but also contains a significant amount of new results and
material:

– We performed more extensive experiments, including a
user study of people using a realtime web-based version
of our system to identify birds.

– Performance of computer vision algorithms has been sig-
nificantly improved, both in terms of part localization
and multiclass species classification [improving classifi-
cation accuracy on CUB-200-2011 (Wah et al. 2011) from
10.3 % (Wah et al. 2011) to 56.8 %]

– We added support for multiple choice and multi-select
questions, leading to significant reductions in human time
over binary questions [along with new computer vision
algorithms, average time to classify species CUB-200-
2011 has been reduced from 58.4 s (Wah et al. 2011)
to 20.53 s]

– Additional implementation details have been added
throughout the paper, including details on how we convert
computer vision systems to probabilities, and formalized
details of how to put a wider array of computer vision
algorithms into a human-in-the-loop framework

– We added supplementary material with additional details
on improved computer vision algorithms (including new
pose clustering techniques, more sophisticated features,
and structured learning algorithms), dataset statistics,
qualitative examples, videos of our user interface, and
analysis of which questions were selected by our system.

1.3 Paper Structure

The structure of the paper is as follows. In Sect. 2, we review
related work. We define the problem and describe different
types of computer vision algorithms for multiclass recog-
nition, part localization, and attribute-based classification in
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Sect. 3. In Sect. 4, we introduce our models for human annota-
tors based on crowdsourced data collection. We then describe
our approach to combine human and machine computation
for the problem of localized recognition in Sect. 5. We present
our experimental results and the findings of our human user
study in Sect. 6. Finally we conclude and discuss future work
in Sect. 7.

2 Related Work

2.1 Fine-Grained Categorization

Fine-grained visual categorization (FGVC) is a challenging
problem that has recently become a popular topic in computer
vision. Applications include recognizing different species of
leaves (Kumar et al. 2012; Belhumeur et al. 2008), flow-
ers (Nilsback and Zisserman 2006, 2008), dogs (Parkhi et
al. 2011; Liu et al. 2012; Parkhi et al. 2012; Khosla et al.
2011), birds (Branson et al. 2010; Farrell et al. 2011; Wah et
al. 2011; Zhang et al. 2012; Lazebnik et al. 2005), and stone-
fly larvae (Martınez-Munoz et al. 2009; Larios et al. 2010).
Each of these can be seen as interesting scientific applica-
tions with a significant appeal to a specific demographic of
users, enthusiasts, or citizen scientists. In conjunction with
this, many new FGVC datasets have emerged with richer
annotations, such as CUB-200-2011 (Wah et al. 2011) (birds
with parts and attributes), Columbia Dogs With Parts (Liu et
al. 2012), Leeds Butterflies (Wang et al. 2009) (segmenta-
tions and text descriptions), Oxford-IIIT Pets (Parkhi et al.
2011, 2012) (cats and dogs with segmentations and bound-
ing boxes), and Stanford Dogs (Khosla et al. 2011) (bounding
boxes).

Most research in FGVC is related to finding less lossy
features, models, or representations to deal with tightly
related categories. The work of (Yao et al. 2011, 2012) and
(Martınez-Munoz et al. 2009) relates to learning features
that go beyond traditional codebook-based methods in object
recognition. (Nilsback and Zisserman 2008) and (Chai et al.
2011, 2012) introduce techniques that improve ROI for fea-
ture extraction by simultaneously segmenting and recogniz-
ing FGVCs. Other methods focus on incorporating part/pose
detectors that supplant or augment bag-of-words methods by
allowing for more strongly localized visual features Farrell
et al. (2011); Wah et al. (2011); Parkhi et al. (2011); Zhang
et al. (2012); Liu et al. (2012); Parkhi et al. (2012). Most of
these methods exploit new types of annotation. The work of
(Farrell et al. 2011; Zhang et al. 2012) explores different
methods for pose normalization using Poselets, including
an original method that is based on 3D volumetric primi-
tives.

The computer vision component of our algorithms is
related to this area; we employ part/pose detection that is

based on mixtures of deformable part models (Yang and
Ramanan 2011; Wah et al. 2011; Branson et al. 2011),
a model that is similar in its representational power to
Poselets. We chose this method because it is popular and
high-performing, while also being easily formalizable and
understandable as a probabilistic model. This allowed us to
mix our detection models with new types of human feed-
back and localized attribute detection techniques. Despite
this, we believe that similar types of interactive meth-
ods could be incorporated with other pose normalization
schemes.

2.2 Human-in-the-Loop Methods

FGVC is difficult for both humans and computers. An inter-
active algorithm that assists a human in discovering the true
class is useful and preferable to a fully automatic yet error-
prone algorithm. Human-in-the-loop methods have recently
experienced a strong resurgence in popularity. (Parikh and
Zitnick 2011a,b) introduced an innovative human debugging
framework, using human experiments to help diagnose bot-
tlenecks in computer vision research. This work is similar
in spirit to our work in that it involves comparing the visual
capabilities of humans and computers.

A number of exciting active learning algorithms that incor-
porate new types of human interactivity have come about in
recent years (Vijayanarasimhan and Grauman 2009, 2011;
Donahue and Grauman 2011; Vondrick and Ramanan 2011;
Settles 2008; Parkash and Parikh 2012; Branson et al. 2011).
In the domain of active learning, our work is most similar to
the work of (Vijayanarasimhan and Grauman 2009) on cost-
sensitive active learning. Our approach is similar in that we
also optimize an information-theoretic criterion to actively
choose a certain type of annotation based on its expected
annotation time. The main difference is that our work pertains
to active testing (i.e., incorporating similar types of interac-
tive feedback at classification time instead of during learn-
ing), and we develop interactive querying strategies for types
of annotations not considered in earlier work (i.e., attribute
and part localization annotations).

Interactive methods for generating vocabularies of parts
or attributes (Maji 2012; Parikh andGrauman 2011; Duan
et al. 2012) and incorporating annotator rationales (Donahue
and Grauman 2011), and runtime interactive computer vision
systems for segmentation and tracking (Wu and Yang 2006;
Rother et al. 2004; Levin et al. 2007; Vondrick et al. 2010) are
all interesting related lines of research that apply to applica-
tions that are not considered in this work (i.e., we specifically
address the area of hybrid human–computer classification).

Our method bears the most resemblance to relevance feed-
back methods in content-based image retrieval (CBIR) (Rasi-
wasia et al. 2007; Ferecatu and Geman 2007; Zhou and
Huang 2003; Lu et al. 2000; Cox et al. 2000; Parikh and
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Grauman 2013), where human feedback is used to interac-
tively refine the result of image search. Our method shares
the same basic objective: combining computer vision with
human feedback to solve some task as quickly as possible.
As such, components of our method build off techniques that
were developed earlier in relevance feedback literature—in
particular, the use of attributes (or some semantic categorical
space) as a vehicle for communicating with humans (Rasi-
wasia et al. 2007; Lu et al. 2000; Kumar et al. 2008; Douze
et al. 2011; Parikh and Grauman 2013) and the use of infor-
mation theoretic techniques to select which type of query to
pose to the human user (Ferecatu and Geman 2007, 2009;
Cox et al. 2000) (see Sect. 2.3 for further discussion). The
main distinguishing feature of our approach is the develop-
ment of a more extensive hybrid human–computer model
for different types of computer vision algorithms for object
recognition, object detection, part localization, and attribute
prediction (i.e., beyond similarity functions and classifiers
based on low-level features), and how these different types
of algorithms naturally interact with different types of user
input.

2.3 Active Testing

Our methodology for selecting which questions to pose to
human users is an instance of active testing (Geman and
Jedynak 1993, 1996; Tsiligkaridis et al. 2013; Jedynak et al.
2012), where a sequence of questions are chosen at runtime to
minimize as much uncertainty as possible about some predic-
tion task (e.g., consider the Twenty Questions Game). Similar
to decision trees (Quinlan 1993), the criterion for choosing
the next question is information theoretic; however, unlike
decision trees, questions are chosen on-the-fly at runtime—
precomputed decision trees would be intractably large (i.e.,
due to an excessively large branching factor or depth as a
result of more complex sources of information).

Active testing has been applied to computer vision to
speedup object localization and tracking problems (Geman
and Jedynak 1993, 1996; Sznitman and Jedynak 2010; Sznit-
man et al. 2011), where the active testing system sequen-
tially chooses locations to evaluate a detector (rather than
brute force evaluate a sliding window detector), iteractively
refining its belief of where the object is located. The main
difference between these methods and ours is the use of
a hybrid model where computer vision estimates are aug-
mented with questions that are posed interactively to humans
(as opposed to a computer). Ferecatu et al. (Ferecatu and
Geman 2007, 2009; Fang and Geman 2005) applied active
testing to image retrieval with relevance feedback, develop-
ing a a system that intelligently selects similarity questions
to pose to human users. The main difference between this
approach and ours is the incorporation of computer vision
at runtime [i.e., (Ferecatu and Geman 2007) considers the

“mental matching” problem where no image is present at
runtime].

2.4 Parts and Attributes

Methods based on parts (Felzenszwalb et al. 2008; Felzen-
szwalb and Huttenlocher 2002; Bourdev and Malik 2009;
Ott and Everingham 2011; Yang and Ramanan 2011) and
attributes (Farhadi et al. 2009; Lampert et al. 2009; Kumar et
al. 2009; Farhadi et al. 2010; Wang and Forsyth 2009; Parikh
and Grauman 2011) have both become popular, mainstream
topics in computer vision research. An interesting component
of FGVC problems is that similarities between classes are
exploitable for transfer learning or model sharing methods
(i.e., different bird species share the same types of parts and
attributes). FGVC methods that incorporate a super-category
detection model (Farrell et al. 2011; Wah et al. 2011; Parkhi
et al. 2011; Zhang et al. 2012; Liu et al. 2012; Parkhi et al.
2012) (i.e., running a universal bird detector before a species
classifier) implicitly use a form of part sharing. Similarly,
many attribute-based methods (Lampert et al. 2009; Kumar
et al. 2009; Farhadi et al. 2010) are motivated as a mechanism
for model sharing.

An equally important motivation for parts and attributes
is that they allow richer types of communication between
humans and computers (Parikh and Grauman 2011; Parkash
and Parikh 2012; Farhadi et al. 2009). In this paper, we aim
to further develop this area, by introducing improved mod-
els and algorithms for human–computer-interaction based on
parts and attributes.

3 Computer Vision for Fine-Grained Categories, Parts,
and Attributes

3.1 Overview and Notation

In this section, we describe different flavors of computer
vision algorithms that apply to multiclass recognition, part
detection, and attribute detection. The computer vision algo-
rithms described in this section obtain state-of-the-art per-
formance on CUB-200-2011 (Wah et al. 2011) without any
interactive component. As such, we describe them in this sec-
tion as a standalone module, such that they maybe relevant
to researchers who are working on a fully automatic solution
to FGVC.

However, as the main point of this paper pertains to
human-in-the-loop systems, we would also like to describe
our algorithms in a way such that researchers who prefer
different types of computer vision algorithms (e.g., boost-
ing instead of SVMs) could incorporate their algorithms in a
human-in-the-loop framework. As such, we briefly introduce
notation used throughout the paper and provide an overview
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of how different types of computer vision algorithms can be
mapped into an interactive framework.

The notation of this paper is a bit heavy, as we aim to
combine computer vision and human estimates of classes,
parts, and attributes. For all methods, we assume an image
x belongs to a single class c ∈ {1...C} (i.e., each image
contains a single bird species). For attribute-based meth-
ods, we assume an object can be represented by a vector
of A attributes a = a1...aA. For part-based methods, we
assume an object’s location can be represented by an array
of P part locations Θ = θ1...θP . We use ã and Θ̃ to rep-
resent a human’s perception of a and Θ , respectively. We
use the notation pM (...) to indicate a probability estimated
using machine vision, and pH (...) to indicate a probabil-
ity estimated using human models. We begin by giving a
high-level sketch of four types of computer vision algorithms
and the basic methods for placing them in an interactive
framework.

– Multiclass classification techniques (Sect. 3.2.1) are
adapted to produce a probabilistic output pM (c|x). They
are combined with human feedback by training a proba-
bilistic model of how humans answer attribute questions
pH (ãi |c) for each class separately.

– Attribute-based recognition techniques (Sect. 3.2.2)
assume expert defined class-attribute memberships ac

(Lampert et al. 2009) and are adapted to produce a prob-
abilistic output pM (c|x) ∝ ∏

i pM (ac
i |x). They are com-

bined with human feedback by training a probabilis-
tic model of how humans answer attribute questions
pH (ãi |ai ) for each type of attribute. By sharing attribute
classifiers and human answer models among classes, they
have potential to require fewer training images.

– Localized multiclass methods (Sect. 3.3) estimate class
probabilities pM (c|x,Θ) conditioned on a candidate
detection location Θ , where Θ describes an object loca-
tion and may encapsulate multiple parts or poses. They
require adapting detection algorithms to produce a prob-
abilistic output pM (Θ|x). Part detectors may be shared
among classes. A probabilistic model of how users answer
part click questions pH (θ̃p|θp) is used to refine part pre-
dictions.

– Localized attribute-based methods (Sect. 3.4) estimate
pM (c|x,Θ) ∝∏

i pM (ai |x,Θ) based on a set of attribute
detectors. They integrate with humans via a models of
pH (Θ̃|Θ) and pH (ãi |ai ).

3.2 Multiclass Recognition Without Localization

3.2.1 Multiclass Recognition

Many popular multiclass recognition methods such as SVMs,
boosting, and logistic regression predict the class c with high-

est score: arg maxc mc(x). For example, in our implementa-
tion we assume a linear model

mc(x) = wc · φ(x) (1)

where φ(x) is a d dimensional feature vector and wc is a
d dimensional vector of learned weights. We learn w =
w1, ...,wC jointly using a Crammer-Singer multiclass SVM

min
w,ε

λ

2
‖w‖2 + 1

N

N∑

j=1

ε j (2)

s.t., ∀ j,c �=y j ,mc(x j )+ 1 ≤ my j (x j )+ ε j (3)

over a training set of N image-class pairs (xi , yi ). This objec-
tive attempts to learn weights such that for each example xi ,
the score of the true class 〈wyi ,φ(xi )〉 is greater than the
score of every other class 〈wc,φ(xi )〉, incorporating a penalty
via a slack variable εi when this is impossible. We convert
scores mc(x) to probabilities using Platt scaling (Platt 1999),
where probabilities are estimated using multiclass sigmoids,
the parameters of which are chosen by maximizing the log-
likelihood on a validation set of L images

pM (c|x) = exp{κcmc(x)+ δc}
∑

c′ exp{κc′mc′(x)+ δc′ } (4)

κ∗, δ∗ = arg max
κ,δ

L∑

i=1

log pM (ci |xi ) (5)

In practice, we found that learning only a single parameter
κ that is shared among classes worked just as well (possibly
due to joint training of class weight vectors in Eq. 3). This
simpler model results in probabilistic estimates

pM (c|x) = exp{κmc(x)}
∑

c′ exp{κmc′(x)} (6)

3.2.2 Attribute-Based Recognition

Different bird species are often composed of the same basic
colors, patterns, and shapes (Farhadi et al. 2009; Lampert
et al. 2009; Kumar et al. 2009; Farhadi et al. 2010; Wang
and Forsyth 2009; Parikh and Grauman 2011). Exploiting
these similarities offers the potential to learn from fewer
training examples, and share processing between classes. As
in (Lampert et al. 2009), we assume each class c is rep-
resented by an A-dimensional vector of binary1 attributes
ac = ac

1, ..., ac
A (e.g., ac

i could indicate that a blue jay has a
blue back). A weight vector wa

i is learned for each attribute,
producing a classification score ma

i (x) = wa
i · φ(x). Let

ma(x) = ma
1(x), ...,ma

A(x) be a vector of attribute classifi-
cation scores. In our experiments, we consider two possible

1 Our user model assumes binary or multinomial attributes; however,
one could use continuous attribute values for the computer vision com-
ponent described in this section
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ways of training class-attribute methods. In the first approach,
we independently train a binary classifier for each attribute
i , as in (Lampert et al. 2009):

min
wa

i ,ε

λ

2
‖wa

i ‖2+
1

N

N∑

j=1

ε j , s.t., ∀ j , 1≤ma
i (x j )b

y j
i +ε j

(7)

where b
y j
i = 2a

y j
i − 1. In our second approach, we learn

attributes jointly while maximizing multiclass classifica-
tion accuracy, optimizing Eq. 3 where class scores are
computed as mc(x) = ac · ma(x). This corresponds to
the same probabilistic model and parameterization as the
direct-attribute-model from (Lampert et al. 2009); how-
ever, whereas (Lampert et al. 2009) trains attributes inde-
pendently and then uses a validation set to normalize them
with respect to one another, we train attributes jointly and dis-
criminatively with respect to a set of observed classes (i.e.,
optimizing Eq. 3). Additional details for solving this con-
vex optimization problem is contained in the supplementary
material.

3.3 Multiclass Recognition With Localization

Reent work (Farrell et al. 2011; Wah et al. 2011; Parkhi
et al. 2011; Zhang et al. 2012; Liu et al. 2012; Parkhi et
al. 2012) has suggested that more strongly localized algo-
rithms maybe necessary to solve FGVC problems. Let Θ be
some encoding of the location of an object within an image;
for example, it could encode information about the object’s
bounding box, part locations, pose or viewpoint, or 3D geom-
etry. Class probabilities can be computed by marginalizing
over part locations:

pM (c|x) =
∫

pM (c|x,Θ)pM (Θ|x)dΘ (8)

Here, pM (Θ|x) is the probability that an object is in a partic-
ular configurationΘ , and can be computed using techniques
from object detection or part-based detection (Sect. 3.3.1).
pM (c|x,Θ) can be computed as the output of a localized
multiclass classifier (Sect. 3.3.2) which extracts features with
respect to a candidate configuration Θ [i.e., in some pose
normalized space (Zhang et al. 2012)]. In this paper, we rep-
resent the location of an object by a set of part locations
Θ = {θ1...θP }, where the location θp = {x p, yp, sp, vp} of a
particular part p is represented as an image location (x p, yp),
a scale sp, and an aspect vp (e.g., side view left, side view
right, frontal view, not visible, etc.).

3.3.1 Part Detection

We represent parts using a deformable part model (DPM)
(Felzenszwalb and Huttenlocher 2002), where parts are

arranged in a tree-structured graph T = (V, E) (see Fig. 6b).
A full description of the model, inference, and learning is
contained in the supplementary material. We review the basic
terminology here. We model the detection score g(Θ; x) as
a sum over unary and pairwise potentials log(pM (Θ|x)) ∝
g(Θ; x) with

g(Θ; x) =
P∑

p=1

ψ(θp; x)+
∑

(p,q)∈E

λ(θp, θq) (9)

where each unary potentialψ(θp; x) is the response of a slid-
ing window part detector, and each pairwise score λ(θp, θq)

encodes a likelihood over the relative displacement between
adjacent parts. We use the same learning algorithms and
parameterization of each term in Eq. 9 as in (Branson et al.
2011; Yang and Ramanan 2011). Here parts are semantically
defined, and weight parameters for appearance and spatial
terms are learned jointly using a structured SVM (Tsochan-
taridis et al. 2006).

A mixture model is used to handle objects of different
poses, such that the part detection score ψ(θp; x) is set
equal to the detection score for the selected aspect (mix-
ture component) vp. The aspect vp is latent during test
time, but is assumed to be observed during structured SVM
training. Since the datasets that we use label part locations
(x p, yp) but not aspects vp, aspect labels are assigned prior
to training using pose clustering techniques—this practice
is widely used for popular implementations of DPMs (Yang
and Ramanan 2011) and poselets (Bourdev and Malik 2009).
In the supplementary material, we consider two pose clus-
tering techniques—one by clustering segmentation masks
around labeled part locations and another by clustering off-
sets between pairs of parts. Mixture models are used to
handle both variation in pose/viewpoint as well as varia-
tion due to species of different shape, since objects in cer-
tain poses or of certain species will be more likely to be
assigned to the same aspect labels. At the same time, the
same set of part-aspect detectors are shared among different
species, yielding improved computuational properties and
generalization.

After training, we convert detection scores to probabil-
ities pM (Θ|x) ∝ exp (γ g(Θ; x)), where γ is a scaling
parameter that is learned by maximizing the log-likelihood
on a validation set of L images labeled by ground truth
parts. Let Θi denote the ground truth part labels of image
xi :

pM (Θ|x) = exp (γ g(Θ; x))
∑
Θ exp (γ g(Θ; x)) (10)

γ ∗ = arg max
γ

L∑

i=1

log pM (Θi |xi ) (11)
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Note that although the denominator of Eq. 10 occurs over an
exponentially large set of part locations, it can be computed
in time linear in the number of parts using dynamic program-
ming. Examples of fully automated part detection results are
shown in Fig. 4.

3.3.2 Localized Multiclass Recognition

We include more details about how to adapt multiclass and
attribute based recognition techniques with a localization
model in the supplementary material; however, the basic idea
is that for each detected part location θp, features ϕp(θp; x)
are extracted from some localized region of interest around
θp (see Fig. 5). Features for each part p = 1...P can be
concatenated into one long feature vector

�(Θ; x) = [ϕ1(θ1; x), ...,ϕP(θP ; x)] (12)

wc = [wc
1, ...,wc

P] (13)

The feature space �(Θ; x) is a pose-normalized feature
space that is extracted with respect to a candidate set of part
configurations Θ . If we know that an object is in a configu-
ration Θ , a multiclass classification can be performed as:

mc(Θ; x) = wc ·�(Θ; x) =
∑

p

wc
p · ϕp(θp; x) (14)

At train time, we assume that each training image xi has been
labeled with ground truth part locations Θi and a class label
yi . We learn weights wc using a multiclass SVM (Eq. 3) using
features extracted at ground truth part locations, φ(xi ) =

�(Θi ; xi ). We produce probabilistic estimates pM (c|x,Θ)
using Eq. 6 and Eq. 14.

3.4 Attribute-Based Recognition with Localization

A similar approach can be used to augment the attribute-
based model described in Sect. 3.2.2 with a part localization
model. Here, attribute detection scores

ma
i (Θ; x) = wa

i ·�(Θ; x) (15)

for each attribute i are combined into a vector ma(Θ; x),
which induces multiclass classification scores

mc(Θ; x) = ac ·ma(Θ; x) (16)

A combined model that learns both per-class weights and
attribute weights that are shared among classes is also possi-
ble:

mc(Θ; x) = ac ·ma(Θ; x)+ wc ·�(Θ; x) (17)

The motivation for using this model is that the per-class
model (Eq. 14) usually tends to outperform the attribute-
based model (Eq. 16) in practice–presumably because an
A-dimensional attribute-space is too simple to discriminate
classes well—(see Sect. 6), whereas the shared attribute
model can improve generalization when the number of train-
ing examples per class is small.

Fig. 4 Fully automated part detection results. five test images with
maximum likelihood estimates of 15 semantic parts superimposed on
the image, and marginalized part probability maps for four parts. Our
system does a good job localizing all parts for the first two images, as
is typical with side and frontal views of birds. The 3rd image is in an

unusual horizontal pose; our system detects the parts of the head cor-
rectly but flips the orientation of the body upside down. The 4th image
is an unusual bird shape; our system detects all parts more or less cor-
rectly but with some degree of noise. The last image is an uncommon
pose for which detection fails entirely
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Fig. 5 Visualization of features for localized multiclass classification.
Three types of features are extracted around detected part locations in
the bird image on the left. From left to right (1) 7× 7 HOG templates
(used for detection), (2) SIFT descriptors are extracted from patches
around a part location and weighted by a ROI predictor based on the
average segmentation mask for the predicted aspect label (weights visu-
alized in red). Patches are soft-assigned to a codebook, and used to

induce a Fisher vector feature space (Perronnin et al. 2010), which can
be interpreted as a higher-dimensional version of bag-of-words that
encodes the deviations of patches to assigned codewords w.r.t. each
SIFT descriptor dimension. (3) The same procedure is used on raw
patches in CIE-Lab-color space instead of on SIFT descriptors (Color
figure online)

4 Human Recognition of Fine-Grained Categories,
Parts, and Attributes

In the previous section, we described computer vision
algorithms that produce probabilistic outputs for predic-
tions of classes pM (c|x), attributes pM (ai |x), part locations
pM (Θ|x), and localized class probabilities pM (c|x,Θ).
Recall from Sect. 3.1, that these can be combined with
human-interactive algorithms if one can train models of how
humans answer attribute questions pH (ãi |c) and perceive
object or part locations pH (Θ̃|Θ). In this section, we intro-
duce ways of modeling these two types of probabilities and
then estimate their parameters using experiments on Mechan-
ical Turk. Our experiments are conducted using the CUB-
200-2011 dataset (Wah et al. 2011).

While we have not performed scientific studies of human
perception of fine-grained visual categories, it should be clear
that the recognition performance of non-experts is extremely
low (e.g., the average person has not heard of a Pied-billed
Grebe and therefore cannot identify it). By contrast, in a small
scale experiment we found that expert birders could achieve
around 93 % accuracy on CUB-200-2011; the number is less
than 100 % because other cues such as multiple views of the
bird, sounds, behavior, and geographical location are often
necessary for accurate recognition.

4.1 Attributes

We constructed a set of 312 binary-valued visual attributes
over 29 attribute groupings (e.g., the grouping bird shape has
14 different possible shapes such as gull-like, duck-like, etc.).
The attributes were derived from the birding website www.
whatbird.com.

4.1.1 Binary Questions

Let ai be the ground truth value of a binary attribute (e.g.,
is the belly white?) and ãi be a random variable for a user’s

perception of ai . We model probabilities for each class p̂c
i =

pH (ãi |c) as a simple binomial distribution with a Beta prior
B(β p̂i , βq̃i ), where β is a constant, p̂i = pH (ãi ) is a global
attribute prior, and q̂i = 1− p̂i . Suppose we have a training set
(x1, c1, ã1), ..., (xn, cn, ãn), where each image x j is labelled

by a class c j and attribute responses ãj = ã j
1 , ..., ã j

A. Then
the MAP estimate of p̂c

i is:

p̂i =
∑

j ã j
i

n
(18)

p̂c
i =

β p̂i +∑
j ã j

i 1[c j = c]
β +∑

j 1[c j = c] (19)

where 1[...] denotes the indicator function. In other words,
pH (ãi ) is estimated as the fraction of the time MTurkers
answer yes to the i th attribute question irrespective of class,
whereas pH (ãi |c) is estimated as the fraction of time MTurk-
ers answer yes for the i th attribute for images of class c if we
add β synthetic examples from the distribution of pH (ãi ).

4.1.2 Multiple Choice Questions

Attributes within some attribute groupings such as bird shape
are assumed to be mutually exclusive (i.e., bird shape is a
multiple choice question). The extension to these types of
questions is straightforward. Here, we assume a response
ãi has ki possible discrete values ai ∈ 1...ki . We model
pH (ãi |c) as a Multinomial distribution with a Dirichlet prior,
resulting in estimates:

p̂ik =
∑

j 1[ã j
i = k]

n
(20)

p̂c
ik =

β p̂ik +∑
j 1[ã j

i = k, c j = c]
β +∑

j 1[c j = c] (21)

Here p̂ik = pH (ãi = k) is computed as the fraction of the
time MTurkers choose value k for the i th attribute question
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irrespective of class, whereas p̂c
ik = pH (ãi = k|c) is com-

puted as the fraction of time MTurkers choose value k for
the i th attribute question for images of class c if we add β
synthetic examples from the distribution of pH (ãi = k).

4.1.3 Per-Class Attribute Model Versus Per-Attribute Model

So far, we have assumed that attribute response probabilities
are estimated separately for each class pH (ãi |c). An alterna-
tive is to train a model pH (ãi |ai ) for each possible value of ai

separately while ignoring class (i.e., using a similar method
as Eqs. 19 and 21). Note that estimating pH (ãi |c) requires
human experiments that pose attribute questions for all possi-
ble class-attribute pairs (c, i), an operation that maybe expen-
sive. By contrast, the corresponding attribute-based method
trains models pH (ãi |ai ) for each attribute ai , independent of
class. Per-class answer probabilities can then be estimated
as pH (ãi |c) = pH (ãi |ac

i ), assuming expert-defined class-
attribute values ac

i are available (e.g., from a field guide one
can infer that the crown of a blue jay is blue).

On the positive side, this allows the possibility of introduc-
ing new unseen classes [analagous to (Lampert et al. 2009)]
without requiring additional human experiments (e.g., if we
introduce a species blue jay, we can assume the distribution
of how users answer the question is the crown blue? can be
derived based on statistics of other observed bird species that
have a blue crown). On the negative side, some information
is lost in the mapping to expert-defined binary attributes ac

i .
Using a per-class model pH (ãi |c) will usually give better
results if enough training data is available.

4.2 Modeling User Click Responses

In this section, we construct a model of human responses to
the simple interface shown in Figs. 6, 7b, where the user is
asked to click on the location of a part p, or specify that p is

not visible. We represent a user’s click response as a triplet
θ̃p = {x̃ p, ỹp, ṽp}, where (x̃ p, ỹp) is a point that the user
clicks with the mouse and ṽp ∈ {0, 1} is a binary variable
indicating not visible or visible respectively.

Note that the user click response θ̃p models only part loca-
tion and visibility, whereas our model of the part’s true loca-
tion θp = {x p, yp, sp, vp} also includes scale and aspect.
This is done in order to keep the user interface as intuitive as
possible. On the other hand, incorporating scale and aspect in
the computer vision model is extremely important — the rel-
ative offsets and visibility of parts in left side view and right
side view will be dramatically different. Let us assume that
vp = 0 indicates that part p is not visible and other values
stand for different visible aspects. We assume that the user
correctly predicts a part’s visibility with some probability
depending on the ground truth pose, modeling p(ṽp = 1|vp)

as a separate binomial distribution for each possible value of
vp. If the user correctly predicts visiblity and clicks some-
where, we assume the user’s click location (normalized by the
scale of the object) is Gaussian distributed from the ground
truth location

c̃p =
(

x̃ p − x p

sp
,

ỹp − yp

sp

)

, c̃p ∼ N (μ̃p, �̃p) (22)

If the user incorrectly predicts that a part is visible, we assume
that the user’s click location is uniformly distributed through-
out the image. Enumerating each of these cases:

pH (θ̃p|θp)

= p(ṽp|vp)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pH (c̃p|μ̃p, �̃p) if vp �= 0, ṽp �= 0

1 if ṽp = 0

1
W H if vp = 0, ṽp �= 0

(23)

where W and H are the width and height of the image,
and pH (c̃p|μ̃p, �̃p) is the bivariate normal probability den-
sity with mean μ̃p and covariance �̃p. The parameters of

(c) (d)(b)(a)

Fig. 6 Probabilistic models. In this paper, we describe several differ-
ent flavors of computer vision algorithms and how they can be com-
bined with interactive feedback. (a) The unlocalized multiclass model
(Sect. 5.1.1) trains a classifier and model of how users answer questions
for each class independently. (b) Our localization model assumes spatial

relationship between parts has a hierarchical independence structure.
(c) A localized per-class model Sect. 5.1.2 incorporates the part-tree
from (b) and trains a detector for each class. (d) A localized part-
attribute model (Sect. 5.1.3) incorporates the part-tree from (b) and
shares attribute detectors between classes
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Fig. 7 Attribute and part questions. a For the attribute question what is the wing color the user selects both black and white and qualifies her
answer with a certainty definitely. b For the part click question click on the tail, the user provides an (x, y) mouse location (Color figure online)

these distributions are estimated using a training set of pairs
(θp, θ̃p). Figures 8 and 9b visualizes one standard deviation
when we learned our model (Eq. 22) from over 26,000 clicks
per part from Mechanical Turk workers. As a reference, we
also include a comparison to computer vision part predictions
(Sect. 3.3.1) in Fig. 9c.

5 Combining Humans and Computers

In Sect. 3, we described computer vision algorithms that pro-
duce probabilistic outputs for predictions of classes pM (c|x),
attributes pM (ai |x), part locations pM (Θ|x), and local-
ized class probabilities pM (c|x,Θ). In Sect. 4, we intro-
duced probabilistic models of how humans predict attributes
pH (ãi |c) and part locations pH (Θ̃|Θ). In this section, we
address the questions (1) how do we combine these differ-

ent sources of information into an improved estimate that is
better than humans or computers could do in isolation?, and
(2) if we treat human time as a precious resource, how do
we use our current beliefs to intelligently select what type of
human input to query next?

We begin by describing our methods of combining com-
puter vision and human responses into an improved estimate
p(c|x,U ) in Sect. 5.1, where U is assumed to be a collection
of user responses that we have received so far. In Sect. 5.2,
we describe an active testing (Geman and Jedynak 1993,
1996) algorithm called the Visual 20 Questions Game (visu-
alized in Fig. 10), in which a machine intelligently chooses
questions to pose to a human user with the objective of iden-
tifying the true class as quickly and as accurately as possible.
This interactive algorithm incorporates methods for estimat-
ing p(c|x,U ) as a sub-routine.
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Fig. 8 Examples of user responses for 25 attribute groupings. The dis-
tribution over {Guessing, Probably, Definitely} is color coded with blue
denoting 0 % and red denoting 100 % of the five answers per image
attribute pair. Notice, for example, that the ivory gull image on the left

receives unambiguous answers for the crown color and the eye color,
while it receives highly uncertain answers for the color of the leg. Also,
the Whip-poor-will image on the right is of bad quality and received
many ‘guessing’ answers as a result

Fig. 9 Comparing part prediction accuracy for humans and comput-
ers. In each case, a Gaussian distribution over scale-normalized off-
sets between predictions and ground truth is estimated (Eq. 23), and
ellipses visualize 1 standard deviation from ground truth. (a) Image-
level standard deviations over 5 MTurk users who labeled this particu-
lar Black-footed Albatross image. (b) Global standard deviations over
5,794 images and five users per image. Ellipses are superimposed onto

an unrelated picture of a bird for visualization purposes. Global stan-
dard deviations appear larger than image-level ones because occasion-
ally MTurkers click entirely on the wrong part. (c) Standard deviations
over computer vision predictions (Sect. 3.3.1) for 5,794 test images.
Standard deviations of computer vision predictions are much larger
because occasionally computer vision detects the bird entirely in the
wrong location

5.1 Combining Human and Machine Predictions

As it is our goal to make our formulation as general
as possible, we break down different ways of estimat-
ing p(c|x,U ) into sections, each of which is applica-
ble to a different family of computer vision algorithms.
Section 5.1.1 pertains to traditional unlocalized multi-
class classification algorithms. Section 5.1.2 incorporates

part localization and a localized classification model. Sec-
tion 5.1.3 extends this model further by sharing attribute
detectors between classes. These three methods correspond
to the probabilistic models shown in Fig. 6a, 6c, and 6d
respectively. All three methods support human interac-
tion via human attribute responses, whereas interaction
via part click questions pertains only to the localized
models.
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Fig. 10 Visualization of the flow of the basic algorithm. The system poses questions to the user, which along with computer vision, incrementally
refine the probability distribution over classes

5.1.1 Combining Multiclass Recognition with Human
Attribute Responses

In this section, we propose a simple method for combining
traditional multiclass recognition algorithms (see Sect. 3.2.1)
with answers to human attribute questions U = ã (see
Sect. 4.1). Our discussion in this section pertains to unlocal-
ized computer vision algorithms–assuming the simple model
depicted in Fig. 6a—such that part click questions are not rel-
evant. The probability p(c|x, ã) can be written as:

p(c|x, ã) = p(c, ã|x)
p(ã|x) =

p(ã|c, x)p(c|x)
∑

c′ p(ã|c′, x)p(c′|x) (24)

We define these two expressions in terms of our computer
vision model p(c|x) = pM (c|x)—defined in Sect. 3.2.1—
and human model p(ã|c, x) = pH (ã|c)—defined in Sect.
4.1. In the latter case, we have modelled the user’s perception
of attributes as depending only on the class c of an object
and not the image x . This is reasonable if we assume that
attributes are class-deterministic, and the human brain is able
to parse an image into detected attributes while factoring
out other external factors contained within x such as pose
and lighting. Note that our model of pH (ã|c) is still non-
deterministic, allowing us to accommodate for variation in
responses due to user error, subjectivity in naming attributes
(e.g., different people perceive the color blue differently),
and other sources of intraclass variance.

5.1.2 Localized Multiclass Model

In this section, we describe an extension to the algorithms
described in the previous section to localized computer vision
algorithms (see Sect. 3.3.1), where one first attempts to pre-
dict both the location of an object in an image (e.g., the loca-
tion and pose of different parts) as well as its class. Such
algorithms offer additional opportunities for a more complex
interplay between computer vision algorithms and human
interactivity, because a person can provide interactive feed-
back with respect to her perception of both object localization
as well as object attributes.

Incorporating a localization model, the class probabilities
can be obtained by marginalizing over the localization vari-
ables Θ:

p(c|x,U ) = p(c,U |x)
∑

c p(c,U |x) (25)

p(c,U |x) =
∫

Θ

p(c,U,Θ|x)dΘ (26)

Note that p(c,U,Θ|x) can be decomposed into terms

p(c,U,Θ|x) = p(c|Θ, x)p(Θ|x)p(U |c,Θ, x) (27)

where we define p(c|Θ, x) = pM (c|Θ, x) in terms of the
output of a localized multiclass classifier (see Sect. 3.3.2),
and p(Θ|x) = pM (Θ|x) in terms of the output of a part-
based detector (see Sect. 3.3.1). Suppose we separate U into
sets UΘ ⊆ U and Ua ⊆ U that pertain to part and attribute
responses respectively. We define p(U |c,Θ, x) in terms of
our user models developed in Sect. 4

p(U |c,Θ, x) = pH (UΘ |Θ)pH (Ua |c) (28)

=
⎛

⎜
⎝

∏

θ̃p∈UΘ

pH (θ̃p|θp)

⎞

⎟
⎠

⎛

⎝
∏

ãi∈Ua

pH (ãi |c)
⎞

⎠

(29)

Here, we have applied the independence assumptions depict-
ed in Fig. 6c; we assume a user’s perception of the location
of a part p depends only on the ground truth location of that
part p(θ̃p|θp) (see Sect. 4.2), and a user’s perception of an
attribute ai depends only on the ground truth class, as justified
in Sect. 5.1.1.

5.1.3 Localized Attribute Model

A related model uses attribute-based detection in place of
standard multiclass classification techniques:

p(c,U,Θ|x) =
∑

a

p(c,U,Θ, a|x)

=
∑

a

pM (c, a|Θ, x)pM (Θ|x)pH (U |c, a,Θ, x)

= pM (ac|Θ, x)pM (Θ|x)pH (UΘ |Θ)pH (Ua |ac) (30)
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where we assume each class c deterministically has a unique
vector of attributes ac (Lampert et al. 2009) (see Fig. 6d),
and p(ac|Θ, x) is the response of a set of attribute detectors
evaluated at locations Θ (see Sect. 3.3.2). Note that in com-
parison to Eq. 29, we use a slightly different expression for
the probability of human attribute responses p(Ua |c):

pH (Ua |ac) =
∏

ãi∈Ua

pH (ãi |ac
i ) (31)

where we have incorporated per-attribute user models instead
of per-class attribute user models (see Sect. 4.1.3).

5.1.4 Inference

In this section, we describe efficient inference procedures for
estimating per-class probabilities p(c|U, x) (Eq. 26) (either
according to the localized class model in Fig. 6a or the local-
ized part-attribute model Fig. 6c), which involves evaluating∫
Θ

p(c,U,Θ|x)dΘ . We note that all user responses ãi
p and

θ̃p are observed values pertaining only to a single part, and
attributes ac are deterministic when conditioned on a par-
ticular choice of class c. If we run inference separately for
each class c, the output of class detectors, part detectors, and
user responses can all be combined and mapped into a unary
potential for each part

ψc
p(θp; x) = κwc

p · ϕp(θp; x)+ γψ(θp; x)+ log p(θ̃p|θp)

(32)

such that gc
U (Θ; x) = log p(c,U,Θ|x) is expressible in

canonical form for pictorial structure problems

gc
U (Θ; x) = K c

U +
P∑

p=1

ψc
p(θp; x)+

∑

(p,q)∈E

γ λ(θp, θq)

(33)

where K c
U =

∑
ãi∈UA

log p(ãi |c). The above expression can
be obtained by plugging in the expressions from Eqs. 29, 14,
10, and 23 into Eq. 27. Thus evaluating Eq. 26 exactly can be
done by running a separate deformable part model inference
problem for each class2.

On the other hand, when C is large, running C inference
problems can be inefficient. In practice, we use a faster pro-
cedure that approximates the integral in Eq. 26 as a sum over

2 The integral in Eq. 26 involves a bottom-up traversal of T = (V, E),
at each step convolving a spatial score map with a unary score map
(takes time O(n log n) time in the number of pixels).

K strategically chosen sample points:

∫

Θ

p(c,U,Θ|x)dΘ ≈
K∑

k=1

p(c,U,Θk |x)

=
K∑

k=1

pH (U |c,Θk, x)pM (c|Θk, x)pM (Θ
k |x)

= pH (Ua |c)
K∑

k=1

pM (c|Θk, x)pH (UΘ |Θk, x)pM (Θ
k |x)

(34)

We select the sample setΘ1...ΘK as the set of all local max-
ima in the probability distribution p(UΘ |Θ)p(Θ|x), where
fU (Θ; x) = log(p(UΘ |Θ)p(Θ|x)) is expressible as a picto-
rial structure problem with part detection and click likelihood
scores combined into a unary potential ψ̃p(x, θ̃p;Θ)

fU (Θ; X) =
P∑

p=1

ψ̃p(θp; θ̃p, x)+
∑

(p,q)∈E

γ λ(θp, θq) (35)

ψ̃p(θp; θ̃p, x) = γψ(θp; x)+ log p(θ̃p|θp) (36)

The set of local maxima and their respective log probabilities
can be found using standard methods for maximum likeli-
hood inference on deformable part models and then running
non-maximal suppression. The inference step takes time lin-
ear in the number of parts and pixel locations3 and is effi-
cient enough to run in a fraction of a second with 15 parts, 30
aspects per part, and 4 scales. Inference is re-run each time
we obtain a new user click response θ̃p, resulting in a new set
of samples. Sampling assignments to part locations ensures
that localized multiclass classification algorithms only have
to be evaluated on K candidate assignments to part locations;
this opens the door for more expensive categorization algo-
rithms (such as kernelized methods) that do not have to be
run in a sliding window fashion.

5.2 The Visual 20 Questions Game

In this section, we describe an interactive classification
method called the visual 20 questions game that combines
the models and algorithms that we have heretofore described
in this paper. The algorithm is conceptually simple and sum-
marized in Fig. 10; it poses a series of questions to a human
user that are intelligently selected based on computer vision
and previous user responses.

Let Q = {q1...qn} be a set of possible questions (e.g., is
red?, has stripes?, click on the beak, etc.), and Ai be the

3 Maximum likelihood inference involves a bottom-up traversal of T ,
doing a distance transform operation (Felzenszwalb et al. 2008) for each
part in the tree (takes time O(n) time in the number of pixels).
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Algorithm 1 Visual 20 Questions Game
1: U 0 ← ∅
2: for t = 1 to 20 do
3: j (t) = maxk IG(c; uk |x,U t−1)

4: Ask user question q j (t), and U t ← U t−1 ∪ u j (t).
5: end for
6: Return class c∗ = maxc p(c|x,U t )

set of possible answers to qi . The user’s answer is some
random variable ui ∈ Ai . At each time step t , we select
a question q j (t) to pose to the user, where j (t) ∈ 1...n. Let
j ∈ {1...n}T be an array of T indices to questions that we will
ask the user. U t−1 = {u j (1)...u j (t−1)} is the set of responses
obtained by time step t − 1. For our basic algorithm, we
use maximum expected information gain as the criterion to
select q j (t). We propose a different criterion based on mini-
mizing expected human time in Sect. 5.2.4. Information gain
is widely used in decision trees [e.g. (Quinlan 1993)] and
can be computed from an estimate of p(c|x,U t−1). (Geman
and Jedynak 1993, 1996) introduced a “20-Questions-Game”
approach for recognition that successively chooses a ques-
tion to ask by computing information gain in online fashion
(rather than precomputing an intractibly big decision tree).
Our approach is an instance of this framework where the pre-
diction model combines information from humans and com-
puters. The expected information gain IG(c; ui |x,U t−1) of
posing the additional question qi , is defined as follows:

IG(c; ui |x,U t−1) =
∑

ui∈Ai

p(ui |x,U t−1)
(

H(c|x,U t−1)− H(c|x, ui ∪U t−1)
)

(37)

where p(ui |x,U t−1) is an estimated probability that the user
will answer ui to the question qi and H(c|x,U t−1) is the
entropy of p(c|x,U t−1)

H(c|x,U t−1) = −
C∑

c=1

p(c|x,U t−1) log p(c|x,U t−1) (38)

The general algorithm for interactive object recognition is
shown in Algorithm 1. Recall that we have already intro-
duced methods for estimating p(c|x,U ), the main term in the
entropy computation, in the previous section. In the remain-
der of this section, we describe techniques for efficiently
solving maxi IG(c; ui |x,U t−1) for several different flavors
of computer vision algorithms and sources of user input.

5.2.1 Binary and Multiple Choice Attribute Questions

We first consider simple binary and multiple choice ques-
tions. These allow for a particularly simple online method
for computation of p(c|x,U t ) and p(ui |x,U t−1), the two

terms in Eq. 37. Let us define sc
t−1 = pH (U t−1|c)pM (c|x)

as the numerator of Eq. 24 after the (t − 1)th question. Note
that sc

0 = pM (c|x) can be precomputed using the computer
vision algorithms defined in Sect. 3.2.1 or 3.3. Suppose we
have already computed sc

t−1 in an earlier timestep and want
to estimate an updated probability p(c|x,U t−1, ã j ) after an
additional user response ã j . If we use the model defined in
Sect. 5.1.1, it follows that

p(c,U t−1, ã j |x) = sc
t = p̂c

j s
c
t−1 (39)

while the probability that the user will answer u = ã j is

p(u|x,U t−1) =
∑

c
p̂c

j s
c
t−1

∑

c,ã′j∈Aq

p̂c
j ′s

c
t−1

(40)

and the resulting updated class probabilities are

p(c|x,U t−1, ã j ) =
p̂c

j s
c
t−1

∑

c′
p̂c′

j sc′
t−1

(41)

Eq. 37–41 define an efficient way for computing the expected
information gain (Eq. 37) of a candidate question q.

5.2.2 Multi-Select and Batch Questions

We define batch questions as a collection of multiple ques-
tions that are more efficient for the user to answer at the
same time than to answer sequentially. For example, as
shown in Fig. 7a the question what is the wing color has
15 possible color choices, and the user can select more than
one (in this case she selected black and white). As such,
the question is similar to asking 15 simultaneous binary
questions. We model this type of question q as a collec-
tion of Lq sub-questions dq1, ..., dq Lq . This poses a chal-
lenge when computing expected information gain, as the
space of possible answers that we must search through
Aq = Aq1×Aq2× ...×Aq Lq is exponential in the number
of sub-questions.

We consider an approximation, where we instead search
over a smaller set of K random samples Āq = ū1, ..., ūK ,
with each ūi defining an answer to all sub-questions. In prac-
tice, we draw each sample by looping over each sub-question
dqk and randomly choosing an answer according to its prob-
ability (Eq. 40). The probabilities p(c,U t−1, ã j |x) can then
be estimated as in Sect. 5.2.1. Although this procedure is
clearly sub-optimal (both due to sampling and treating sub-
questions as independent), it is more important to have a fast
question selection method (i.e., never forcing the user to wait
for the machine to process) than to choose the absolute opti-
mal question (since typically many questions will provide
useful information).
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5.2.3 Part Click Questions

Part click questions (see Fig. 7b) pose an even more signif-
icant computational challenge, both because the number of
possible answers to each question is large (equal to the num-
ber of pixel locations), and because the effect of each answer
is complex (it involves refining estimates of part locations
and integrating over them to recompute class probabilities).
Evaluating the expected information gain (Eq. 37) for a given
part location question q j involves computing the expected
entropy:

Eθ̃p
[H(c|x,U t−1, θ̃p)]
=

∑

θ̃p

p(θ̃p|x,U t−1)H(c|x,U t−1, θ̃p) (42)

Using the model defined in Sect. 5.1.2, p(θ̃p|x,U t−1) can be
efficiently computed without approximation densely for all
values of θ̃p using dynamic programming (as a deformable
part model inference problem), where our model of part
clicks log pH (θ̃p|θp) has been mapped into a pairwise poten-
tial between nodes θ̃p and θp. Note that this is possi-
ble because adding unobserved variables θ̃p to the tree-
structured graphical model depicted in Fig. 6b preserves a
tree-structured graph. In practice, computing probabilities
p(θ̃p|x,U t−1) for all values of p while marginalizing over
Θ can be computed using a single forward-backward algo-
rithm, as in (Branson et al. 2011).

On the other hand, evaluating the sum in Eq. 42 is compu-
tationally intensive. We approximate it by drawing J samples
θ̃ t

p1...θ̃
t
pJ from the distribution p(θ̃p|x,U t−1), then comput-

ing the expected entropy pc
t j = p(c|x,U t−1, θ̃ t

pj ) over those

samples:

Eθ̃p
[H(U t−1, θ̃p)] ≈ −

J∑

j=1

p(θ̃ t
pj |x,U t−1)

∑

c

pc
t j log pc

t j

(43)

Recall that in Sect. 5.1.4 we used a similar sampling based
approximation technique, where class probabilities were
approximated over samples Θ t−1

1 ...Θ t−1
K . As in Eq. 34, we

approximate pc
t j ∝ p(c,U t−1, θ̃ t

pj |x) over this sample set:

p(c,U t−1, θ̃ t
pj |x) =

∫

p(c,U t−1, θ̃ t
pj ,Θ|x)dΘ

≈
K∑

k=1

p(c,U t−1,Θk , θ̃ t
pj |x) = (44)

pH (Ua |c)
K∑

k=1

pM (c|Θk , x)pH (UΘ |Θk)pM (Θ
k |x)pH (θ̃

t
pj |θ t−1

pk )

where pH (θ̃
t
pj |θ t−1

pk ) is computed using Eq. 23. The full ques-
tion selection procedure is fast enough to run in a fraction of a
second on a single CPU core when using 15 click questions
and 312 binary questions. Fig. 11 shows a few qualitative
examples of part click questions and how they are used to
evolve predictions of part locations and classes.

5.2.4 Selecting Questions by Time

The expected information gain question selection method
(Eq. 37) can roughly be understood as a greedy algorithm
that attempts to minimize the total number of questions asked
(as bits of information can be equated to binary questions).

(a) (b)

(c)

(d)

Fig. 11 Four examples of the behavior of our system. (a) The sys-
tem estimates the bird pose incorrectly but is able to localize the head
and upper body region well, and the initial class prediction captures
the color of the localized parts. The user’s response to the first system-
selected part click question helps correct computer vision. (b) The bird
is incorrectly detected. The system selects “Click on the beak” as the
first question to the user. After the user’s click, other part location prob-

abilities are updated and exhibit a shift towards improved localization
and pose estimation. (c) Certain infrequent poses (e.g., flying while in
frontal view) are not well captured by our detector. The initial prob-
ability distributions of part locations over the image demonstrate the
uncertainty in fitting the pose models. The system tends to fail on these
unfamiliar poses. d The system will at times select both part click and
binary questions to correctly classify images
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This is suboptimal as different types of questions tend to take
more time to answer than others (e.g., part click questions are
usually faster than attribute questions). We include a simple
adaptation that attempts to minimize the expected amount
of human time spent. The information gain criterion IGt (q j )

encodes the expected number of bits of information gained
by observing the random variable u j . We assume that there
is some unknown linear relationship between bits of infor-
mation and reduction in human time. The best question to
ask is then the one with the largest ratio of information gain
relative to the expected time to answer it:

q∗j (t+1) = arg max
q j

IGt (q j )

E[time(u j )] (45)

where E[time(u j )] is the expected amount of time required
to answer a question q j , which we estimate as the average
response time of Mechanical Turkers.

6 Experimental Results

In this paper, we proposed several different computer vision
models for multiclass classification based on shared parts and
attributes (Sect. 3), human models for answering questions
relating to perception of parts and attributes (Sect. 4), and a
hybrid model for combining humans and computers (Sect. 5).
Our experiments in this section include lesion study experi-
ments to evaluate the utility of each component, a user study
of people using a realtime implementation of our system for
bird species classification, and experiments on the CUB-200-
2011 (Wah et al. 2011) and Animals With Attributes (Lam-
pert et al. 2009) datasets. Our experiments are organized as
follows:

1. In Sect. 6.1, we describe implementation details for com-
puter vision and human models

2. In Sect. 6.2, we evaluate different fully automatic com-
puter vision algorithms on CUB-200-2011, including
non-localized mutliclass methods, part-localized multi-
class methods, and several different attribute-based meth-
ods. The results, implementation details, and relation to
the algorithms described in this paper are summarized in
Table 1.

3. In Sect. 6.3, we evaluate the effect of different human
models and hybrid systems, including the relative utility
of different possible strategies for picking which ques-
tion to pose to humans (Fig. 12a), the relative utility of
computer vision versus humans as different information
sources (Fig. 12b), the relative utility of binary, multiple
choice, multi-select, and part click questions (Fig. 12c),
and the effect of imperfect human responses (Fig. 13a).
The results, implementation details, and relation between

experiments and the technical content of this paper are
summarized in Table 3.

4. In Sect. 6.4, we conduct a user study of people using a
realtime implementation of our system to classify bird
species.

5. In Sect. 6.5, we perform additional experiments beyond
bird species classification on the Animals With Attributes
dataset (Lampert et al. 2009).

6.1 Implementation Details

6.1.1 CUB-200-2011 Dataset

CUB-200-2011 (Wah et al. 2011) is a dataset of 11,788
images over 200 bird species. Each image was exhaus-
tively labeled with 15 different part locations and 312
binary attributes by Mechanical Turk workers. The dataset
was divided into a training set and testset—both of 5,794
images—and a validation set of 200 images.

6.1.2 Human Models

Human user models were learned from MTurk labels on the
training set. Per-class binary and multiple choice models
were estimated using Eq. 19 and 21 with prior parameter
β = 4. Part-click models were estimated as described in
Sect. 4.2. Our 312 binary attributes were divided up both
into yes/no binary questions, as well as 29 groupings (e.g.,
belly color is a grouping of 15 binary attributes) that were
divided into 12 multiple choice questions and 17 multi-select
questions.

6.1.3 Part Detection

For part detection, we used 7 × 7 HOG templates for each
aspect detector (mixture component), with 100 mixture com-
ponents for the body, 50 mixture components for the head,
and 30 mixture components for all other parts. Mixture com-
ponents were learned using the procedures described in the
supplementary material. All detectors were trained jointly
using a structured SVM. Detection scores were converted to
probabilities by optimizing Eq. 10 on our validation set.

6.1.4 Species Classification

For multiclass recognition, we extracted Fisher vector (Per-
ronnin et al. 2010) encoded color and SIFT features. In each
case, a codebook of 100 words was learned using a Gaussian
mixture model. For SIFT, parameter settings and normaliza-
tion schemes were performed as described in (Perronnin et
al. 2010) (inducing a 2× 64× 100-dimensional feature vec-
tor ϕp(θp; x) for each part p), and SIFT descriptors were
extracted from patches of width 16, 24, 32, 40, and 64 pix-
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Table 1 Method summary and results for automated computer vision algorithms (no human-in-the-loop) on 200 class CUB-200-2011 dataset,
measured in terms of classification accuracy

All methods use the same feature space, as described in Sect. 6.1. The 1st four columns provide technical details for implementation and a link
to the relevant sections describing each method. The first row measures performance using an unlocalized classification model (extracting image
level features); we see a significant improvement in performance from incorporating a part-localized model (28.2 → 55.3 %). The middle three
rows compare different related procedures for combining part detection with multiclass recognition. We see that sampling multiple pose predictions
yields a small improvement over just using the maximum likelihood prediction. The accuracy of a fully automated system (55.3 %) isn’t that
far behind the accuracy we would obtain if we were given ground truth part locations at test time (64.5 %), suggesting our current bottleneck is
probably the performance of our part-localized classifiers/features rather than part detectors. The last three rows compare different methods for
attribute-based classification. We see a big gain (28.2→ 43.4 %) from training attributes jointly (rather than independently); however, a per-class
model outperforms an attribute-based one (53.4 vs. 43.4 %). A solution that combines a per-class model with an attribute model yields the best
performance (56.5 %)

els. For color, we trained our codebook on 2 × 2 templates
of raw pixels in Lab color space (inducing a 2 × 12 × 100-
dimensional feature vector per part). In both cases, features
were extracted densely from a 56 × 56 patch around each
predicted part location4, and features from all 15 parts were
concatenated into one long feature vector �(Θ; x). For non-
localized methods, we extracted the same set of features from
the entire image, inducing a vector φ(x). Weights for all
classes were learned using a linear multiclass SVM (Eq. 3).
Classifier scores were converted to probabilities by optimiz-
ing Eq. 5 on our validation set. For attribute-based methods,
we used 312-dimensional soft, per-class attribute vectors ac

provided with the CUB-200-2011 dataset.

6.2 Fully Automated Computer Vision Results

In Table 1, we present classification accuracy using com-
puter vision (with no human-in-the-loop) on the full 200
class CUB-200-2011 dataset. We compare each of the main
computer vision algorithms proposed in Sect. 3 using a fixed
feature space as described in Sect. 6.1, including a tradi-

4 in practice, we also computed an average segmentation mask for each
part-aspect and used that to weight each extracted patch, see supplemen-
tary material

tional multiclass classifier without a localization model (Sect.
3.2.1), two different variants of a multiclass classifier with a
localization model based on shared parts (Sect. 3.3.2), and
3 different variants of a multiclass classifier based on shared
parts and attributes (Sect. 3.4). The results, implementation
details, and connection to the relevant technical sections of
the paper are shown in Table 1. We summarize the results
below:

6.2.1 Comparing Localization Models

We see a significant performance increase from incorporat-
ing a localization model, from 28.2 % (traditional multiclass
classifier on image-level features) to 53.4 % (a multiclass
classifier on part-localized features extracted from the maxi-
mum likelihood prediction of a part-based detector). We also
compare to an alternate method in which K different sets
of part locations are sampled when estimating class proba-
bilities (Sect. 5.1.4)—this results in a slight improvement in
performance from 53.4 to 55.3 %, with good performance
at K = 20 samples. If an oracle provided ground truth part
locations at test time, performance could be boosted further
to 64.5 %—this represents an upperbound on performance
of our current features/model for multiclass classification if
we had perfect part detectors.
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(a) (b) (c)

Fig. 12 Performance on CUB-200-2011 for different crippled ver-
sions of our algorithm. Plots show how quickly classification accuracy
improves as users spend more time answering questions for different
methods, with the average time to correctly classify an image shown in
the legend. See Table 3 for the technical details for each method. (a) A
comparison of different question selection techniques shows that select-
ing by time (Eq. 45) significantly outperforms selecting by information
gain, which outperforms selecting questions randomly. (b) Selecting by

time, computer vision reduces average classification time from 76.66 to
20.53 s (cyan vs. red). (c) Selecting by time and using computer vision,
incorporating multiple choice and multi-select questions reduces time
from 27.59 to 23.06 s compared to binary questions (green vs. blue), and
adding part click questions further reduces time from 23.06 to 20.53 s
(blue vs. red). Note that since there are only 15 total part click ques-
tions, they aren’t always sufficient to obtain perfect classification (purple
curve) (color figure online)

(a) (b)

Fig. 13 Different models of user responses. (a) Classification perfor-
mance on CUB-200-2011 using human answers to binary attribute ques-
tions (no computer vision). Performance rises quickly (purple curve)
if users respond deterministically according to ground truth attributes.
MTurk users respond quite differently, resulting in low performance

(yellow curve). A learned model of MTurk responses is much more
robust (green curve). (b) A test image where users answer several ques-
tions incorrectly—the belly is white (not red), the breast is white and
red (not black), and the primary color is white and black (not red)—
and our model still classifies the image correctly (Color figure online)

6.2.2 Comparing Attribute-Based Methods

We implementated a few different part-localized attribute-
based methods. These three attribute methods include (1)
a method in which attribute classifiers are trained indepen-
dently and then combined probabilistically [this is the tradi-
tional approach, as in (Lampert et al. 2009], (2) a method in
which attribute weights are learned jointly to optimize multi-
class classification accuracy, and (3) a method that combines
both per-class and per-attribute weights, both of which are
learned jointly. The technical details of each method are sum-
marized in the last three rows of Table 1. Our results show that

learning attributes jointly (instead of independently) signifi-
cantly improves classification accuracy, from 28.7 to 43.4 %;
however, both attribute-based methods do not perform as well
as a per-class model, which achieves an accuracy of 53.4 %.
A possible explanation is that a low-dimensional vector of
class-attribute memberships is not sufficiently discrimina-
tive to distinguish bird species. A model that combines per-
class weights (which may better capture fine-grained differ-
ences between classes) and per-attribute weights (which may
improve generalization when the number of training exam-
ples is small) outperforms all methods, achieving an accuracy
of 56.5 %.
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Table 2 Comparison to related work (computer vision) on 200 class
CUB-200-2011 dataset, measured in terms of classification accuracy

A number of papers (Berg and Belhumeur 2013; Zhang et al. 2013;
Chai et al. 2013; Gavves et al. 2013) have recently come out in CVPR
and ICCV 2013 that significantly outperform earlier methods on CUB-
200-2011. Like our paper, these papers combine newer features with an
improved localized model

6.2.3 Comparison to Other Papers

Table 2 shows a comparison of our computer vision perfor-
mance to other papers. A number of papers (Berg and Bel-
humeur 2013; Zhang et al. 2013; Chai et al. 2013; Gavves et
al. 2013) have recently come out in CVPR and ICCV 2013
that obtain classification accuracies of 51−−62 % on CUB-
200-2011, a significant improvement over the results of ear-
lier published work [10.3−−28.2 % (Wah et al. 2011; Zhang
et al. 2012)]. These papers employ similar algorithms to our
paper: newer features with an improved part-based localiza-
tion model. Our performance is in the same realm as these
newer papers.

6.3 Simulated Human-in-the-Loop Experiments from
MTurk Responses

Although we have put effort into developing high perform-
ing computer vision algorithms, the point of this paper is
to introduce algorithms for human-in-the-loop systems. The
experiments in the remaining sections focus on interactive
algorithms for improving classification accuracy while min-
imizing human time.

To compare different versions of our algorithms, we
exhaustively collected answers to all image-question pairs
using Mechanical Turk using the GUIs shown in Figs. 3, 4.
We used the resulting answers and response times to simulate
human-in-the-loop classification sessions using the follow-
ing procedure:

1. Predict the class with highest probability p(c|x,U )
according to Eq. 34. If the predicted class is the true
class, assume the simulated user will stop the interface
(e.g., by verifying the correctness of the predicted class
after being shown a small gallery of images).

2. Select a question to pose to the user and lookup the answer
and response time from the corresponding MTurk exper-
iment.

3. Repeat steps 1–2 until the user stops the interface

We measure the average total human time spent per test
image, excluding the time it takes to verify correctness of
the species (which we did not measure). Note that we have
assumed that people are perfect verifiers, e.g., they will stop
the system if and only if they have been presented with the
correct class. We explore the legitimacy of this assumption
on real-life user studies in Sect. 6.4. We performed simulated
experiments for different ways of computing p(c|U, x) for
different lesioned versions of our algorithms and different
criteria for selecting the next question. The technical details
for each experiment are shown in Table 3. We summarize the
results in the subsections below:

6.3.1 Question Selection by Time Reduces Human Effort

In Fig. 12a, we compare three different question selection
techniques: Random (choosing a random question among
multiple choice, multi-select, and click questions but exclud-
ing binary questions), expected information gain (Eq. 37),
and time (Eq. 45). For fairness, we excluded binary ques-
tions from random selection; they are almost never useful
because they are redundant with multiple choice questions
while providing a subset of the information, and there are far
more binary questions than multiple choice questions (such
that selecting a question uniformly at random would favor
picking binary ones). We see that the information gain cri-
terion reduces average time from 42.27 to 32.52 s, whereas
selecting by time results in a reduction to 20.53 s. Note that
we have reduced our classification time from 58.4 to 20.53 s
compared to an earlier version of our algorithms (Wah et al.
2011); this is primarily a result of improved computer vision
algorithms and incorporation of multi-select questions.

6.3.2 Computer Vision Reduces Manual Labor

The main benefit of computer vision is that it reduces the
amount of human time needed to identify the true species.
In Fig. 12b, we see that computer vision reduces the average
time from 76.66 to 20.53 s when choosing questions by time.

6.3.3 Multiple Choice and Multi-Select Questions
are Useful

In Fig. 12c, we compare results when certain types of ques-
tions are removed. We see that using multiple choice and
multi-select questions reduces average time from 27.59 to
23.06 s compared to using binary questions.

123



Int J Comput Vis (2014) 108:3–29 23

Table 3 Method summary and results for recognition with a human-in-the-loop on 200 class CUB-200-2011 dataset, measured in terms of amount
of human time to identify the true class

For all methods, class probabilities p(c|U, x) were computed using Eq. 34, with different components of the model removed as indicated by rows
2–5. All methods that use computer vision use the Localized Multiclass, Sample Parts method with K = 20 (3rd row in Table 1) to estimate class
probabilities pM (c|Θk , x) and part probabilities pM (Θ

k |x). Methods that incorporate multiple choice or binary questions use attribute response
probabilities pH (Ua |c) = ∏

i pH (ãi |c) (see Sects. 4.1.1–4.1.2), and methods that incorporate click questions use click response probabilities
pH (UΘ |Θk) =∏

p pH (θ̃p|θp) (see Sect. 4.2). The 8th column shows which equations were used to train the user (human) model. The 6th column
shows the criterion used to choose which question to pose to the user

6.3.4 Click Questions are Asked Early, if Ever

In Fig. 12c, we see that adding click questions in addition
to multiple choice questions reduces average classification
time from 23.06 to 20.53 s. We note that multiple choice
questions are overwhelmingly favored over binary questions
[see Fig. 14]. For the first question, it chooses a click ques-
tion versus a multiple choice question with roughly equal
probability; however, it almost never chooses a click ques-
tion again until the most useful multiple choice questions
have been exhausted. This most likely occurs because the
localization mistakes that are most critical to classification
error are typically corrected by one part click question.

6.3.5 User Responses are Stochastic

In Fig. 13a, we explore the effect of different user mod-
els, without any computer vision in the loop [see the last
three rows of Table 3 for technical details]. When users are
assumed to respond deterministically in accordance with
groundtruth class-attributes, performance rises quickly to
100 % within 8 binary questions (roughly log2(200)). How-
ever, this assumption is not realistic; when testing with
responses from MTurk, performance saturates at around
20 %. Subjective answers are unavoidable (e.g., perception
of the color brown versus the color buff), and the proba-
bility of the correct class drops to zero after any inconsis-
tent response. Although performance is 40 times better than
random chance, it renders the system useless. This demon-
strates a challenge for existing field guide websites. When
our learned model of user responses [(see Sect. 4.1] is incor-

Fig. 14 Analysis of when different types of questions were usually
selected. Click questions were usually chosen as the first question (if
at all), after which multiple choice/multi-select questions were heavily
favored. Notice that the majority of queries end within a few questions

porated, performance keeps improving as more binary ques-
tions are answered due to the ability to tolerate a reasonable
degree of error in user responses (see Fig. 13b, c). Never-
theless, stochastic user responses significantly increase the
number of questions required to achieve a given accuracy
level.

6.3.6 Different Questions are Asked with and Without
Computer Vision

In general, the information gain criterion favors questions
that (1) can be answered reliably, and (2) split the set of pos-
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(a) (b)

Fig. 15 Qualitative examples. (a) An image that is only classified cor-
rectly when computer vision is incorporated. Additionally, the computer
vision based method selects the question is the throat white, a different

and more relevant question than when vision is not used. (b) the user
response to is the crown black helps correct computer vision when its
initial prediction is wrong

sible classes roughly in half. Binary attributes like perching-
like shape, which divide the classes fairly evenly, and yel-
low underparts, which tends to be answered reliably, are
commonly chosen. When computer vision is incorporated,
the likelihood of classes changes and different questions are
selected. In the left image of Fig. 15, we see an example
where a different question is asked with and without com-
puter vision, which allows the system to find the correct class
using one question. The left image in Fig. 15 shows an exam-
ple of an image classified correctly using computer vision,
which is not classified correctly without computer vision,
even after asking 60 questions.

6.4 User Study

The results in previous sections were simulated using ques-
tion responses of Mechanical Turk users. Doing this allowed
us to systematically test different variations of our algo-
rithms without re-running human-in-the-loop experiments;
however, certain aspects of a real life interface were lost in
simulation. We ran a study of users using a full fledged web-
based version of our tool to interactively identify birds. The
web-based tool, shown in Fig. 16a, communicates with a
server that runs computer vision algorithms. A single desktop
computer with a 2.9GHz quadcore CPU was able to handle
at least eight simultaneous users (we didn’t try more) while
serving all requests in about 1 s or less. The user study was
conducted when our computer vision algorithms were only
30 % accurate (we since tweaked scale parameters of SIFT
features to improve performance to 55 %). A screen capture
of the user study interface is included as a supplementary
video.

In this study, 27 human subjects were each asked to use our
tool to identify 10 bird images that were randomly selected
from the CUB-200-2011 test set. Of these 27 subjects, 20
had no experience in birding or using our interface. Among
these 20 inexperienced users, the average time to identify

a bird was 73.7 s, with an average classification accuracy of
54 %, and average taxonomic loss of .99. The taxonomic loss
is defined as the distance to the closest common ancestor of
a predicted species and ground truth species according to
scientific classification (species, genus, family, order, class).
We discuss additional details and analysis of the user study
in the sub-sections below:

6.4.1 The Verification Problem

There is an additional challenge of verifying correctness of
a predicted species that was not modeled in our synthesized
experiments. We handled this by adding a verification capa-
bility to our GUI, where a user could click on a thumbnail
of a top-ranked species to examine a set of exemplars (see
Fig. 16b). The user can then make a decision of whether or
not to stop the interface by choosing that species. The ver-
ification process introduces new sources of time and error
(recall that for simulation in Sect. 6.3, we assumed users
were perfect verifiers).

6.4.2 The Tradeoff Between Time and Accuracy

There is an inherent tradeoff between classification accu-
racy and time; greater accuracy can be achieved by spending
more time answering questions and exploring the verification
interface. A user seeking to identify her own uploaded pic-
ture of a bird will tradeoff these two things according to her
own preferences. By contrast, our users were not interested
in recognizing birds. To put each user on equal footing, we
primed them with a loss function

loss = taxonomic loss+ time in seconds

45
(46)

Users were instructed to try to minimize this loss. In Fig. 17a,
the diagonal blue line depicts an equal level of loss due to
time and taxonomic loss. Each point depicts a different user
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Fig. 16 Web-based interface. Screen captures of the web-interface
used to conduct our user study. (a) The web-interface shows a query
image (left), a question (right), and the 10 top-ranked bird species (bot-
tom). The user can either choose to answer the question or click on the
bottom thumbnail of the bird species. (b) When the user clicks on one

of the top-ranked bird species, a verification interface is opened. The
user can examine additional exemplars and decide whether or not it is
the same species as in the query image. See the supplementary material
for a video of a user using the web-interface.

(where his/her loss was averaged over 10 images). Points
closer to the origin indicate users with lower combined loss.

6.4.3 Improvement Over Existing Online Field Guides

A subset of five users were asked to identify additional
images using the online field guide website whatbird.com.
All users were able to identify birds much more quickly and
accurately using our interface (on average, a time reduction
from 219 to 73.7 s, and a taxonomic loss reduction from 2.12
to .99) as seen in Fig. 17a. Although the sample size was
low, users agreed that our interface clearly offered signif-
icant improvements due to not assuming question answers
are deterministic and incorporating computer vision.

6.4.4 Familiarity with Our UI Affects Classification Time

In Fig. 17a, we plot 27 different users in terms of their aver-
age time and average taxonomic loss. 20 such users were
young computer science students with no background in
birding or experience using our interface. These 20 users
were divided into two groups, the first of which was given 1
training image to become familiar with our interface before
starting the experiment, and 2nd of which was given three
training images. The group that was given more training
images was able to identify birds much faster (on average,
52.7 vs. 99.6 s) with similar level of classification error. Gain-
ing greater familiarity with the interface reduces classifica-
tion time because users spend less time reading instructions
for each question, and have more familiarity with the rela-
tive tradeoff between answering more questions or browsing
through the verification interface. Similarly supporting this
claim, three users who were proficient with the interface but

not very familiar with birding (the three student authors of
this paper) were able to identify birds in 20.6 s on average
while also being slightly more accurate.

6.4.5 Birding Experience and Sources of Classification
Error

We additionally performed our study on three expert birders,
two of which are considered to be among the top birders in the
world. These birders were able to identify birds both quickly
and accurately, with an average classification accuracy of
93 % in 31.9 s. By contrast, the average accuracy of non-
birders was 54 %. The primary reason for this discrepency is
that non-birders have no prior knowledge of the space of birds
or the relatedness of different species. Thus when presented
with an incorrect but similar bird species (e.g., consider the
different sparrow species shown in Fig. 17b), the users were
likely to choose the wrong one. An additional problem is that
when bird species appear very similar, some bird species are
not separable in attribute space with high probability (since
attribute responses can be noisy/subjective). In this case, the
best the interface can do is to communicate a set of candidate
species that are consistent with both attribute responses and
computer vision.

According the the Cornell Ornithology Website5, the four
keys to bird species recognition are (1) size and shape, (2)
color and pattern, (3) behavior, and (4) habitat. Bird species
classification is a difficult problem and is not always possible
using a single image. One potential advantage of the visual
20 questions formulation is that other contextual sources of
information such as behavior and habitat can easily be incor-

5 http://www.allaboutbirds.org/NetCommunity/page.aspx?pid=1053
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Fig. 17 User study results. 27 different users used our interface to iden-
tify 10 bird images. (a) Each point plots the average classification time
(x-axis) versus average taxonomic loss (y-axis) for a particular user.
See Sect. 6.4 for a definition of taxonomic loss. Users were instructed
to optimize a combined loss that trades off time and taxonomic loss
(Eq. 46), with the blue line depicting equal loss due to the two consider-
ations. Most users (blue dots and red plus symbols) had no prior expe-
rience birding or using our interface. Users given three training images
before starting the experiment (blue dots) were significantly faster than
users given one training image (red plus symbols). Users who were non-
birders but had prior experience using our interface (black X’s) were

even faster. Users who were expert birders (orange triangles) were both
fast and accurate. All users of our interface were significantly faster and
more accurate using our interface than users using whatbird.com (green
squares). (b) Images of different sparrow species appear similar to non-
bird experts, such that users are likely to stop the interface early or
choose the wrong one. This is one of the main reasons why users don’t
get 100 % classification accuracy. As a reference point, the average pair-
wise taxonomic loss between species in this cluster of sparrows is 1.73
(i.e., all come from the family Emberizidae, while most do not share
the same Genus) (color figure online)

Fig. 18 Images that are misclassified by our system. In each of the two
panels, the left image is a query image that a user classified using our
system, and the right image is an exemplar of an incorrect species pre-
diction. Left The Parakeet Auklet image is misclassified due to a cropped

image, which causes an incorrect answer to the belly pattern question
(the Parakeet Auklet has a plain, white belly). Right The Sayornis and
Gray Kingbird are commonly confused due to visual similarity

porated as additional questions. Figure 18 illustrates some
example failures.

6.5 Animals with Attributes Dataset

Animals with attributes (AwA) is a dataset of 50 animal
classes such as zebras, pandas, and dolphins. Each class is
associated with soft labels for 85 binary attributes based
on posing class-level attribute questions to multiple peo-
ple, effectively encoding a distribution p(ãi |c). We simulate
test performance by randomly selecting a question response

based on p(ãi |c). The dataset also includes class-attribute
labels, which were obtained by thresholding the soft labels.
While the dataset is not exactly aligned with our goal of
recognition of finer-grained categories, it is the most estab-
lished dataset with the types of annotations required for our
application outside of CUB-200-2011. The dataset is difficult
due to large intraclass variation and unaligned images. We
train unlocalized multiclass (Sect. 3.2.1) and attribute-based
(Sect. 3.2.2) computer vision algorithms using precomputed
features packaged with the dataset. The results of our exper-
iments using simulated user responses are shown in Fig. 19.

123



Int J Comput Vis (2014) 108:3–29 27

Fig. 19 Performance on animals with attributes (probabilistic
attributes). Left Plot Classification performance, simulating user
responses using soft class-attributes [see (Lampert et al. 2009]. Right

Plot The required number of questions needed to identify the true class
drops from 5.94 to 4.11 on average when incorporating computer vision

7 Conclusion

Object recognition remains a challenging problem for com-
puter vision. Furthermore, recognizing amongst fine-grained
categories is difficult even for humans. While neither humans
nor computers excel at the task, their abilities and failings are
complementary. Humans can detect objects and classify them
into broad categories; they can also locate object parts and
measure attributes, such as color and shape. Machines can
remember and handle complex taxonomies, as well as the
association between categories and attributes, and can accu-
rately compute probabilities of classifications based on the
value of those attributes.

We propose a hybrid human–machine visual system that
combines the strengths of both: the human can see better,
the machine can better classify, ask the right questions and
integrate information. The design is simple: it is based on
iterating a sequence of four steps: (a) the machine’s visual
system is used to detect the object and its parts, and to mea-
sure its attributes, based on the available information (image
and human answers); (b) the machine updates its estimate of
the probability of each category; (c) the machine selects the
most informative question that the human should address; (d)
the human answers the question. This design is modular and
may be used in conjunction with a large variety of computer
vision algorithms.

In order to test our design we implemented a field guide
for identifying birds. The field guide was trained using data
collected from paid annotators who answered both click and
attribute questions in response to test images of specimens
belonging to each one of 200 species of birds. We carried
out two experiments: (a) using a set of annotator responses
which had not been used in training, to simulate the responses

of a putative user, (b) with real users who were challenged
to identify bird species in the least amount of time using a
real-time version of our system.

First of all, our experiments show that our subordinate
categorization computer vision system is about 56 % correct
when operating in isolation, without the help of a user. This is
state-of-the-art performance that was achieved after 3 years
of research in algorithms for fine-grained recognition; this
performance is still lower than what we would like for a
useful application.

Second, we find that existing field guides that use attribute
queries to deterministically index into a database of bird
species are mostly unusable by non-experts. Users’ responses
to attribute questions vary a lot due to subjective differences
and often do not agree with expert-defined attributes. A prob-
abilistic model of human attribute responses leads to signif-
icantly better classification performance in comparison to
deterministic field guides generated by experts.

Third, we find that a hybrid system that combines machine
vision with user input drives up performance. The combina-
tion of machine and human is not purely a combination of
machine and human sensors. Rather, the machine dynami-
cally selects the most informative questions to be asked of
the human observer in order to achieve a reliable answer in
the shortest amount of time.

Fourth, a real-time implementation of our bird guide is
a practical and enjoyable tool for humans to achieve bird
classification. The average classification error is small and
classification is done quickly. In sum, our on-line bird guide
is already a useful tool.

The most obvious next step for our research is to validate
our ideas in other domains, besides birds. Obtaining a set
of reasonable attributes and questions for the bird dataset
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was relatively easy, as we relied on existing field guides. The
question is open on how to infer attributes for domains where
field guides are not available.
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