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Abstract

We propose an iterative crowd-enabled active learning algorithm for building
high-precision visual classifiers from unlabeled images. Our method employs do-
main experts to identify a small number of examples of a specific visual event.
These expert-labeled examples seed a classifier, which is then iteratively trained
by active querying of a non-expert crowd. These non-experts actively refine the
classifiers at every iteration by answering simple binary questions about the clas-
sifiers’ detections. The advantage of this approach is that experts efficiently shep-
herd an unsophisticated crowd into training a classifier capable of fine-grained dis-
tinctions. This obviates the need to label an entire dataset to obtain high-precision
classifiers. We find these classifiers are advantageous for creating a large vocab-
ulary of visual attributes for specialized taxonomies. We demonstrate our crowd
active learning pipeline by creating classifiers for attributes related to North Amer-
ican birds and fashion.

1 Introduction

Object detection is a broad sub-field of computer vision. Traditionally, algorithms for object de-
tection are trained using datasets where all the instances of an object have been labeled by human
annotators. This annotation process scales both with the number of images in the dataset and with the
number of objects the researcher intends to detect. This process becomes even more difficult when
the labeling task is crowdsourced. Ideally, members of the crowd will be able to recognize and ac-
curately annotate the objects in question, but in reality workers have different levels of competency
and attention. As a result, efficient dataset construction has itself become a topic of research.

Active learning has been investigated as a way to limit the amount of required labeled training
data. In previous research, active learning has been used to detect pedestrians and discriminate
between object categories[1, 18, 5]. These earlier methods were successful at the time for identifying
things that had a distinctive appearance and were distinct from the background of the image, e.g.
pedestrians on a street, or an animal or object centered in the frame with a plain background in the
fashion of the Caltech-101 and 256 datasets.

As researchers have become more interested in real-world style images, a new class of feature has
emerged. Unlike pixel level color and gradient features, larger sized features that capture a part or
attribute of a larger object have become popular [11, 9, 16, 2]. Methods for training classifiers to de-
tect these mid-level attribute features without a ground truth labeled dataset have been unsupervised
up to this point [6].

Typically, attribute or part classifiers are created using datasets labeled by human annotators. State
of the art classifiers for parts and attributes related to vehicles, animals, scenes, and faces have been
trained using large sets of ground truth labels for supervision [9, 17, 11]. Unfortunately, creating
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datasets with detailed annotations is costly and time consuming. Obtaining high quality results from
crowdsourced annotators, who are often untrained and of unknown provenance, is open research
topic [21, 10, 12].

To obtain classifiers capable of identifying salient visual features, researchers have recently designed
unsupervised and weakly supervised training pipelines[6, 19, 14]. These methods can also be costly
and time consuming, as they require thousands of CPU hours to train classifiers. After creating
large vocabularies of mid-level classifiers, these methods still need a human to review the classi-
fiers’ detection behavior in order to understand the contextual meaning of each mid-level feature.
The salient visual events identified by these methods may not even be conveniently described with
language. While it is possible to use ensembles of these mid-level features for object classification,
the discovered, mid-level structures don’t necessarily have one to one mapping to high level visual
concepts.

While non-nameable mid-level features are useful for K-way classification, we aim to provide mod-
els for nameable attributes and parts. Nameable attributes are instrumental in broader problems of
high-level context understanding and reasoning [16].

We propose an approach to training nameable mid-level feature classifiers that neither requires large,
labeled datasets nor massive computing architectures. We use a combination of experts and un-
trained crowd members to iteratively improve discriminative classifiers. We aim to make our method
cheaper and faster than comparable methods that must first create a labeled dataset. We can also take
advantage of adding new images to our training set at any point in the pipeline while other methods
would have to label the image or re-initialize the unsupervised pipeline to ensure optimality. Our
proposed method allows users to dynamically create new attribute classifiers in parallel and scalably
add images from new datasets.

2 Related Work

Our proposed method produces classifiers for fine-grained visual phenomena. This type of visual
phenomena is often described as attributes or parts in the literature. The objective of our iterative
training method is to create classifiers that detect salient, discriminative phenomena. Existing meth-
ods for identifying these types of localized, discriminative visual events are often fully automatic
methods that operate on labeled datasets [8, 3]. Other successful approaches have employed hu-
mans in the attribute discovery process [16, 17, 14]. These human-in-the-loop attribute discovery
methods eventually use ground truth labels to create attribute classifiers.

In comparison, our method directly avails itself of expert knowledge on attributes that are essential
for fine grained categorization within a given taxon. We ask the experts to provide a small number of
exemplar images to seed the initial stage of classifier training. Using our method, experts in vision or
other fields can create classifiers for attributes they themselves have identified. The domain experts
can create multiple exemplar models of a given attribute if multiple orientations or poses are required
to adequately describe the variability of an attribute or part.

The concept of creating multiple exemplar models for one higher-level visual phenomena was intro-
duced by [15]. Malisiewicz et al. use a set of classifiers to describe one object. Each classifier in
the set is trained to detect the object in a specific orientation. The output of several relatively simple
exemplar classifiers can then be used in conjunction to identify an object with variable appearance.
Related work in the automatic and unsupervised discovery of salient image patches has also shown
that a library of classifiers, each describing a particular example of an object or attribute, can be
useful in state of the art classification pipelines [6, 19].

Similarly, we propose a method for creating distinct exemplar classifiers that can be used to identify
a more complex attribute. Each exemplar classifier is seeded with expert-identified images of the
attribute or part in a canonical pose or orientation. At each iteration of the active learning process,
untrained crowd workers only have to identify if a set of detections do or do not contain the given at-
tribute. This enables the crowd to accurately respond to active learning queries that would otherwise
be prohibitively domain-specific. Our method takes advantage of straightforward binary questions,
guided by the expert exemplars, in order to elicit reliable results from the crowd. Similar research
into parallelizing crowd micro-tasks has recently been described by [13, 4, 7].
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As previously mentioned, active learning has been used to create pedestrian and object classifiers
[1, 5]. Collins et al. envisioned their active learning method as a way to scalably construct datasets.
Vijayanarasimhan and Grauman evaluated active learning as a way to manage effort and expense
for crowd annotation [20]. We believe our method is the first to exploit the combined efforts of
expert annotators and the crowd via active learning. In the next section, we describe the details of
our method and demonstrate its potential for easy parallelization and cost effective creation of large
numbers of attribute classifiers.

3 Bootstrapping Classifiers

We begin the bootstrapping process by identifying a group of experts who would like to create visual
classifiers for their data. To demonstrate our pipeline, we consulted experts in two distinct domains,
common birds of eastern North America and street style fashion. We consulted experts at Cornell
University’s Lab of Ornithology to obtain a dataset of bird images and a set of exemplars patches
for the heads of different bird species. This dataset contains 4150 images. We crawled images and
meta-data from the fashion blog thesartorialist.com for street style clothing images and attributes.
This dataset contains 882 images. For this initial prototyping, a self-described fashion expert on our
team created the exemplar patches for the fashion attributes.

Figure 1: Crowd Active Learning Pipeline. This diagram illustrates the expert labeling pipeline in conjunction
with Algorithm 1. A group of experts on a given taxon create a list of significant attributes. They provide
approximately 5 examples of each attribute in different canonical poses for that attribute. This is the set of
seed training examples, or ‘exemplars’ [15]. The process detailed in Algorithm 1 uses these exemplar sets to
construct the final classifiers. Note the ◦ symbol indicates the function orderDetections() in Algo. 1.

Equipped with our attributes and exemplar images, we ran the pipeline illustrated in Fig. 1 and
formalized in Algorithm 1. We took exemplars for 5 bird attributes and 3 fashion attributes and
prompted non-expert members of our labs to answer our active queries for 5-10 iterations of the
pipeline. We use a maximum number of iterations (10 in the case of birds and 5 in the case of
fashion) if the classifier had not converged.

The interface for the active query component of our pipeline is shown in Fig. 2. In the following
initial experiments, only responses from untrained lab members were collected. This interface will
be used on Amazon Mechanical Turk without alteration.

Figure 2 demonstrates how our pipeline simplifies the annotation question posed to the crowd. In-
stead of asking users to find and annotate a particular attribute in a large set of images where the
attribute will likely be rare, we simply ask if a patch does or does not match a set of exemplars. This
enables the crowd to accurately respond to queries that would otherwise be prohibitively domain-
specific. The classifier and the crowd are able to collaborate to inductively learn the expert-defined
attribute.

We chose to ask the crowd user to select negatives for two reasons. Firstly, adding hard negatives,
patches that do not contain the attribute but were selected with high confident, to the dataset is one
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Input: Dataset D of image patches, set of negative images from the wild N
Output: Classifiers C for attributes A

1 A⇐ attributes . acquired through consultation with experts
2 for Ai ∈ A do
3 Sij ⇐ seed exemplars of Ai in pose j
4 end
5 for Ai ∈ A do
6 for Sij ∈ Si do
7 Cij = svmTrain( Sij ,N)
8 Nij = ∅ ∀i, j . set of hard negatives is initially empty
9 repeat

10 D= orderDetections(Cij, D −Nij)
11 Nij = Nij ∪ hasNegatives(D) . crowdsourced method
12 Cij = svmTrain( Sij, Nij ∪N)
13 until convergence()
14 end
15 end
16 return C,A

Algorithm 1: Crowd Active Learning for Attribute Patches

Figure 2: Active Query User Interface. The UI shown in this figure implements the function
hasNegatives() in Algo. 1. Users are shown the exemplar patches for the attribute in question. They
are given a display of the top 200 detections from the validation setD (not all pictured). Users click all patches
they believe are not visually and contextually similar to the exemplar patches.

way to implement the active learning technique of maximizing expected model change [18]. Hard
negative examples will by definition change the learned hyperplane of the linear SVM we chose to
use as our discriminative classifier. While a variable number of hard negatives are not guaranteed
to maximally alter this learned hyperplane, they can qualitatively ensure a large deviation in the
learned model at successive iterations of the pipeline. Secondly, we found that the crowd responds
more reliably when they record the absence of an exemplar rather than its presence.

In this initial prototyping of our pipeline we demonstrated the method on few attributes, modestly
sized datasets, and a local crowd. However, the following section shows promising results on this
early venture.
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4 Results

Figure 3 shows the exemplars used to train 3 bird and 3 fashion attributes. Beneath each set of exem-
plar patches are the top 5 most confident detections for the given attribute at successive iterations of
the pipeline. Attributes for the Ruby Throated Hummingbird, jackets and blazers show an increas-
ingly improving classifier. The attributes for Blue Jay and shorts seem to plateau with non-optimal
results. In future work we plan to correct this behavior by improving the pixel level features used
and greatly increasing the size of the training datasets. Because these attributes are rare, classifiers
can only improve if the dataset providing patches is large enough for the attribute to occur dozens
or more times.

Figure 3: Example detections at different iterations of the pipeline. This figure shows the top 5 detections of
the attribute classifiers at different iterations of the training pipeline. The attributes include the Ruby Throated
Hummingbird Head, Blue Jay Head, Cardinal Head, jackets (general category), blazers, and shorts. The bird
attribute classifiers were run for more iterations because the bird image dataset contained 4150 images while
the street style fashion dataset only held 882.

To quantify the iterative performance of our crowd-trained classifiers, Fig. 4 plots the number of
selected hard negatives against the iteration number. It is important to note that the ‘positives’ at
each iteration may include patches that are visually similar but not actually the same attribute as
the exemplar. For example the exemplars for Ruby Throated Hummingbirds show only adult males
while the top detections are picking up juvenile males and females. The detector for shorts is also
picking up skirts, which may be related to the small number of shorts in the fashion dataset. Given
larger datasets and the combination of several exemplars for the same attribute, the top detections of
our classifiers would be more likely to contain the correct attribute.
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Figure 4: Number of Hard Negatives versus Number of training iterations. Results of the hasNegatives()
in Algo. 1 on 5 different bird part attributes. Respondents were non-experts from the authors’ lab. For most
of the attributes, the classifiers are increasingly returning patches that either contain the correct attribute or
are strongly similar to the exemplar attribute. Note that the validation set D begins with approx. 1 million
images patches, with approx. 25 patches sharing exactly the same attribute and pose as the exemplars. For
a visualization of these results, refer to Fig. 3. In the Blue Jay Head trial, the classifier is not finding many
acceptable patches, even after 10 iterations. This is due to a combination of the classifier confusing the Blue
Jay with birds that have similar head shape and the current prototype state of our color and gradient features,
which are not sufficiently representing that attribute.

5 Discussion

In this work we presented an efficient approach to training nameable mid-level feature classifiers.
Our approach uses experts to capture and share visual expertise with unskilled crowd sourced anno-
tators via active learning. The pipeline we propose does not require a labeled dataset nor a massive
computing architecture and is highly scalable. This makes our approach straight forward and cost-
effective to deploy to new categories.

Our future work on this project will involve deploying our pipeline on dozens of bird and fashion
attributes. We will expand our fashion dataset to include both runway and street style images to
make a dataset containing tens of thousands of unlabeled images. After creating large number of
classifiers, we will be able to compare our classifier performance to labels provided by untrained
crowd members without any help from experts. These experiments will allow us to demonstrate that
our method captures and shares visual expertise with the crowd, improving their ability to contribute
to classifier training.
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